98%
921
2 minutes
20
Radiology education is challenged by increasing clinical workloads, limiting trainee supervision time and hindering real-time feedback. Large language models (LLMs) can enhance radiology education by providing real-time guidance, feedback, and educational resources while supporting efficient clinical workflows. We present an interpretation-centric framework for integrating LLMs into radiology education subdivided into distinct phases spanning predictation preparation, active dictation support, and postdictation analysis. In the predictation phase, LLMs can analyze clinical data and provide context-aware summaries of each case, suggest relevant educational resources, and triage cases based on their educational value. In the active dictation phase, LLMs can provide real-time educational support through processes such as differential diagnosis support, completeness guidance, classification schema assistance, structured follow-up guidance, and embedded educational resources. In the postdictation phase, LLMs can be used to analyze discrepancies between trainee and attending reports, identify areas for improvement, provide targeted educational recommendations, track trainee performance over time, and analyze the radiologic entities that trainees encounter. This framework offers a comprehensive approach to integrating LLMs into radiology education, with the potential to enhance trainee learning while preserving clinical efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jacr.2025.07.003 | DOI Listing |
Arq Gastroenterol
September 2025
Department of GI Surgery, HPB and Liver Transplantation, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
Background: Pancreaticoduodenectomy (PD) is a complex procedure with significant postoperative morbidity. Associated sarcopenia could be a potential risk for increased post-operative complications.
Methods: Patients who had undergone pancreaticoduodenectomy bet-ween July 2019 to December 2020 were included in the study.
BackgroundThis investigation aimed to determine the utility of postnatal, ultrasonographically-derived dimensions of the thymus and spleen as imaging indicators for the prediction of early-onset neonatal sepsis (EOS).Material and MethodIn this case-control study, 30 term neonates diagnosed with Early-Onset Sepsis (EOS), based on European Medicines Agency (EMA) criteria, were compared to 30 healthy, matched control neonates. All participants underwent ultrasonography to quantify thymic and splenic dimensions.
View Article and Find Full Text PDFPLoS One
September 2025
Institute of Primary Care, University Hospital of Zurich, Zurich, Switzerland.
Background: In sports science, freestyle swimming has been thoroughly studied for particular performance-related factors. Nonetheless, it is unknown what countries the top freestyle swimmers are from, especially not for age group swimmers. In addition, the existing research on the performance of master freestyle swimmers has yet to confirm that male swimmers achieve faster times than their female counterparts across all age groups and distances.
View Article and Find Full Text PDFBrain Struct Funct
September 2025
Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey.
The anterior commissure (AC) has an anterior and posterior limb. Despite comprehensive information about the posterior limb, there is limited and conflicting information about the anterior limb in the literature. We aimed to show the anatomical relationships of the AC with neighboring structures by using white matter microdissection and magnetic resonance (MR) tractography, primarily on the anterior limb of the AC.
View Article and Find Full Text PDFPhys Eng Sci Med
September 2025
Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia.
This study introduces a novel optimization framework for cranial three-dimensional rotational angiography (3DRA), combining the development of a brain equivalent in-house phantom with Figure of Merit (FOM) a quantitative evaluation method. The technical contribution involves the development of an in-house phantom constructed using iodine-infused epoxy and lycal resins, validated against clinical Hounsfield Units (HU). A customized head phantom was developed to simulate brain tissue and cranial vasculature for 3DRA optimization.
View Article and Find Full Text PDF