98%
921
2 minutes
20
Consistently accurate 3D nucleic acid structure prediction would facilitate studies of the diverse RNA and DNA molecules underlying life. In CASP16, blind predictions for 42 targets canvassing a full array of nucleic acid functions, from dopamine binding by DNA to formation of elaborate RNA nanocages, were submitted by 65 groups from 46 different labs worldwide. In contrast to concurrent protein structure predictions, performance on nucleic acids was generally poor, with no predictions of previously unseen natural RNA structures achieving TM-scores above 0.8. Even though automated server performance has improved, all top-performing groups were human expert predictors: Vfold, GuangzhouRNA-human, and KiharaLab. Good performance on one template-free modeling target (OLE RNA) and accurate global secondary structure prediction suggested that structural information can be extracted from multiple sequence alignments. However, 3D accuracy generally appeared to depend on the availability of closely related 3D structures, and predictions still did not achieve consistent recovery of pseudoknots, singlet Watson-Crick-Franklin pairs, non-canonical pairs, or tertiary motifs like A-minor interactions. For the first time, blind predictions of nucleic acid interactions with small molecules, proteins, and other nucleic acids could be assessed in CASP16. As with nucleic acid monomers, prediction accuracy for nucleic acid complexes was generally poor unless 3D templates were available. Accounting for template availability, there has not been a notable increase in nucleic acid modeling accuracy between previous blind challenges and CASP16.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12248019 | PMC |
http://dx.doi.org/10.1101/2025.05.06.652459 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453.
Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
September 2025
School of Life Science, Liaoning Normal University, Dalian, 116081, China.
Cutibacterium acnes (C. acnes, formerly classified as Propionibacterium acnes) is a Gram-positive bacterium that contributes to the development of acne vulgaris, resulting in inflammation and pustule formation on the skin. In this study, we developed and synthesized a series of antimicrobial peptides (AMPs) that are derived from the skin secretion of Rana chensinensis.
View Article and Find Full Text PDFMetabolomics
September 2025
Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire, Angers, France.
Introduction: The definition of Leber's hereditary optic neuropathy (LHON) does not take into account a preclinical phase during which the thickness of retinal nerve fiber layer (RNFL) is increased, prior to optic nerve atrophy, reducing the chances of visual recovery.
Objectives: Search for a metabolomic signature characterizing this preclinical phase and identify biomarkers predicting the risk of LHON onset.
Methods And Results: The blood and tear metabolomic profiles of 90 asymptomatic LHON mutation carriers followed for one year will be explored as a function of RNFL thickness and compared to those of a healthy control.
Mikrochim Acta
September 2025
Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.
We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.
View Article and Find Full Text PDFMol Biol Rep
September 2025
ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India.
Background: Labeo fimbriatus (Bloch, 1795) is a medium-sized South Asian minor carp with ecological significance and emerging aquaculture potential, particularly in polyculture systems with Indian major carps. Despite its wide distribution, it remains underrepresented in phylogenetic studies, and limited genomic resources are available. Here, we report the complete mitochondrial genome sequence of L.
View Article and Find Full Text PDF