Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background/purpose: The 3D printer and post-curing unit are important factors in producing the best 3D printed crowns. To explore the effects of different combinations of 3D-printers and manufacturer-specified post-curing units on the dimensional accuracy, compressive strength, and degree of conversion (DC%) of 3D-printable resin for fixed dental prostheses.

Materials And Methods: Specimens were designed in 2 sizes and additively-manufactured using 2 digital light processing (DLP) 3D-printers (NextDent 5100, ND and PrintinDLP+, PN). The 3D-printed samples were polymerized using 2 different post curing units (LC-3D Print box, N and PrintInCure+, P). Dimensional accuracy was evaluated under an optical microscope, while compressive strength was determined using a universal testing machine. Fourier transform infrared spectroscopy was used to analyze the resin molecular bond characteristics and DC%. Statistical analysis, including ANOVA and Tukey's HSD post-hoc tests ( < 0.05).

Results: Significant dimensional variations were observed for both square and rectangular samples ( < 0.001). The ND-P showed the greatest ductility and relatively high maximum stress. The fracture strengths were ND-N: 181.55 ± 8.37 MPa, ND-P: 151.54 ± 2.06 MPa, PN-N: 175.51 ± 12.44 MPa, and PN-P: 127.84 ± 10.10 MPa ( < 0.001). Surface inspection at 200 × magnification revealed subtler fault lines in ND-N and PN-P. FTIR analyses confirmed DC% was highest for ND-N (79.70 ± 1.02%) and PN-N (78.12 ± 0.94%), intermediate for ND-P (73.24 ± 0.89%) and PN-P (71.06 ± 1.67%).

Conclusion: Post-curing units had a greater impact on dimensional accuracy, strength, and polymerization than the choice of 3D-printer. Optimal resin properties require careful optimization of post-curing parameters and equipment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254842PMC
http://dx.doi.org/10.1016/j.jds.2025.03.024DOI Listing

Publication Analysis

Top Keywords

dimensional accuracy
16
post-curing units
12
compressive strength
12
3d-printers manufacturer-specified
8
manufacturer-specified post-curing
8
units dimensional
8
accuracy compressive
8
strength degree
8
degree conversion
8
resin fixed
8

Similar Publications

Background: Percutaneous transthoracic lung biopsy (PTNB) guided by Computed Tomography (CT) greatly depends on the operators' skill for accuracy. This study aimed to evaluate whether three-dimensionally(3D) printed navigational templates for percutaneous transthoracic lung biopsy achieve diagnostic yield comparable to conventional computed tomography guidance.

Materials And Methods: Conducted from 1 November 2020, to 27 July 2023, this noninferiority randomized clinical trial included 159 patients with peripheral lung masses (≥30 mm).

View Article and Find Full Text PDF

Background And Aim: Granulosa cells (GCs) are crucial mediators of follicular development and oocyte competence in goats, with their gene expression profiles serving as potential biomarkers of fertility. However, the lack of a standardized, quantifiable method to assess GC quality using transcriptomic data has limited the translation of such findings into reproductive applications. This study aimed to develop a hybrid deep learning model integrating one-dimensional convolutional neural networks (1DCNNs) and gated recurrent units (GRUs) to classify GCs as fertility-supporting (FS) or non-fertility-supporting (NFS) using single-cell RNA sequencing (scRNA-seq) data.

View Article and Find Full Text PDF

Objective: The present study aimed to compare the accuracy of the Paprosky Classification of Femoral Bone Loss using plain radiographs and two-dimensional computed tomography (2D CT) images with the femoral defect observed intraoperatively by the surgeon.

Methods: There were 14 hip surgeons from the same hospital who classified 80 patients with an indication for revision hip arthroplasty according to Paprosky based on plain radiographs in anteroposterior views of the pelvis and 2D CT images, reconstructed in the axial, coronal, and sagittal planes. We compared this data with the intraoperative findings of femoral bone loss by the same surgeons.

View Article and Find Full Text PDF

Objective: The present study aimed to compare the accuracy of the Paprosky Classification of Femoral Bone Loss using plain radiographs and two-dimensional computed tomography (2D CT) images with the femoral defect observed intraoperatively by the surgeon.

Methods: There were 14 hip surgeons from the same hospital who classified 80 patients with an indication for revision hip arthroplasty according to Paprosky based on plain radiographs in anteroposterior views of the pelvis and 2D CT images, reconstructed in the axial, coronal, and sagittal planes. We compared this data with the intraoperative findings of femoral bone loss by the same surgeons.

View Article and Find Full Text PDF

Background: Understanding respiratory motions of liver and its surrogate organs is crucial for precise dose delivery in liver cancer radiotherapy. Although these motions have been studied for respiratory motion management in the supine posture, few studies have quantified them and evaluated their correlations in the upright posture.

Purpose: This study quantified the respiratory motions of liver and surrogate organs and evaluated the correlations between the liver motions and surrogate signals for respiratory motion monitoring in both the supine and upright postures.

View Article and Find Full Text PDF