Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rhodopsins are light-sensitive membrane proteins capturing solar energy via a retinal cofactor covalently attached to a lysine residue. Several groups of rhodopsins lack the conserved lysine and showed no retinal binding. Recently, flotillin-associated rhodopsins (FArhodopsins or FARs) were identified and suggested to lack the retinal-binding pocket despite preserving the lysine residue in many members of the group. Here, we present cryoelectron microscopic (cryo-EM) structures of paralog FArhodopsin and proteorhodopsin from marine bacterium Pseudothioglobus, both forming pentamers similar to those of other microbial rhodopsins. We demonstrate no binding of retinal to the FArhodopsin despite preservation of the lysine residue and overall similarity of the protein fold and internal organization to those of the retinal-binding paralog. Mutational analysis confirmed that two amino acids, H84 and E120, prevent retinal binding within the FArhodopsin. Our work provides insights into the natural retinal loss in microbial rhodopsins and might contribute to the further understanding of FArhodopsins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2025.06.006DOI Listing

Publication Analysis

Top Keywords

retinal binding
12
lysine residue
12
binding flotillin-associated
8
flotillin-associated rhodopsins
8
microbial rhodopsins
8
retinal
6
rhodopsins
6
structural basis
4
basis retinal
4
binding
4

Similar Publications

Introduction: Autoimmune uveitis is a sight-threatening inflammatory eye disease driven by immune dysregulation. We previously introduced a therapeutic strategy involving the induction of retinal-antigen-specific regulatory T cells (Tregs) via αCD4 antibody injection followed by administration of the retinal self-peptide IRBP1-20, which effectively suppresses inflammation during the onset of experimental autoimmune uveitis (EAU).

Methods: We evaluated the long-term therapeutic efficacy of this approach in a chronic EAU model.

View Article and Find Full Text PDF

Polymer-based gene-drug co-delivery system effectively inhibits pathologic retinal neovascularization through dual anti-inflammatory and anti-neovascular actions.

Biomaterials

September 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

Retinal neovascularization is one of the most prevalent fundus neovascular diseases, affecting vision and potentially leading to severe complications, such as retinal detachment or irreversible blindness. Current treatments primarily involve intravitreal injections (IVT) of anti-vascular endothelial growth factor (anti-VEGF) agents. However, such treatment often requires repeated injections, develop incomplete responses, and are associated with adverse effects.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) is a key player in the development and progression of several diseases, most notably cancer and retinal disorders. Over the last twenty years, VEGF has emerged as a significant therapeutic target for these conditions. This study reports the isolation and characterization of a fully synthetic, humanized, affinity-matured single-domain antibody fragment (VHH) designed to target VEGF.

View Article and Find Full Text PDF

Mutations in the gene in Stargardt disease (STGD1) cause enhanced accumulation of cytotoxic lipofuscin, manifesting in RPE atrophy and photoreceptor dysfunction. One component of lipofuscin is the all--retinal derivative, pyridinium bisretinoid A2E. Since ocular A2E biosynthesis relies on all--retinal, which is obtained from circulating all--retinol bound to retinol binding protein 4 (RBP4-ROL), we hypothesized that modulating vitamin A receptors, such as RBPR2, which regulate serum RBP4-ROL homeostasis, should in principle attenuate A2E production.

View Article and Find Full Text PDF

Microbial rhodopsins are photoreceptor proteins widely distributed in marine microorganisms that harness light energy and support marine ecosystems. While retinal is typically the sole chromophore in microbial rhodopsins, some proteorhodopsins, which are proton-pumping rhodopsins abundant in the ocean, use carotenoid antennae to transfer light energy to retinal. However, the mechanism by which carotenoids enhance rhodopsin functions remains unclear.

View Article and Find Full Text PDF