98%
921
2 minutes
20
Heterocyclic compounds have shown that they hold significant therapeutic activities, highlighting the importance of discovering and developing novel candidates against cancers, infections, and oxidative stress-associated disorders. In this study, we demonstrated the biological activity of our previously synthesized thiazolidinone derivatives (TZDs-1, 6, and 7). Furthermore, we synthesized and structurally characterized a new derivative (TZD-5) using IR, H NMR, and C NMR spectroscopy, confirming the presence of its key functional groups, namely, carbonyl and imine. Their antioxidant activity was assessed through the DPPH assay, with TZD-5 showing the most potent effect (IC = 24.4 µg/mL), comparable to ascorbic acid, an effect attributed to the methoxy group introduced via N-alkylation. Cytotoxicity was evaluated using the MTS assay on normal (HFF-1) and cancerous (HepG2 and A549) cell lines at two time points: 24- and 48 h exposure. Our findings highlight clear differences in cytotoxicity and selectivity among the tested thiazolidinone derivatives. TZD-1 and TZD-6 demonstrated significant, dose-dependent cytotoxic effects on both cancerous (HepG2 and A549) and normal (HFF-1) cell lines, thus limiting their therapeutic potential due to insufficient selectivity. TZD-5 exhibited moderate selectivity with higher susceptibility for HepG2 cells compared to normal cells. Notably, TZD-7 showed the most favorable cytotoxic profile, demonstrating strong selective cytotoxicity toward cancer cell lines with minimal adverse effects on normal fibroblasts. Overall, the results highlight TZD-5 and TZD-7 as promising candidates for antioxidant and selective anticancer therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12249957 | PMC |
http://dx.doi.org/10.3390/ijms26136529 | DOI Listing |
Haematologica
September 2025
Division of Medical Oncology, University Hospital Basel, Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel.
We previously used a disease-specific B cell receptor (BCR) point mutation (IGLV3-21R110) for selective targeting of a high-risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. Since CLL is a disease of the elderly and a significant fraction of patients is not able to physically tolerate CAR T cell treatment, we explored bispecific antibodies as an alternative for precision targeting of this tumor mutation. Heterodimeric IgG1-based antibodies consisting of a fragment crystallizable region (Fc) attached to both an anti-IGLV3-21R110 Fab and an anti-CD3 (UCHT1) single chain variable fragment (R110-bsAb) selectively killed cell lines engineered to express high levels of the neoepitope as well as primary CLL cells using healthy donor and CLL patient-derived T cells as effectors.
View Article and Find Full Text PDFChembiochem
September 2025
School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland.
Activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL) is an aggressive cancer with poor response to standard chemotherapy. In search of new therapeutic leads, a library of 435 fractions prepared from the Irish marine biorepository was screened against 2 ABC-DLBCL cell lines (TMD8 and OCI-Ly10) and a non-cancerous control cell line (CB33). Active fractions are prioritized based on potency and selectivity.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.
Drought stress dynamically reprograms specialised metabolism in medicinal plants. However, the transcriptional regulatory modules governing stress-adaptive metabolite synthesis remain poorly characterised. Here, we identified SbMYB8 as a drought-responsive transcription factor showing nuclear localisation and dose-dependent induction under drought in Scutellaria baicalensis.
View Article and Find Full Text PDFChembiochem
September 2025
Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Mangiagalli 25, 20133, Milan, Italy.
This study investigates the synthesis of aromatic nitriles using an evolved variant of OxdF1 (L318F/F306Y), an aldoxime dehydratase from Pseudomonas putida F1, engineered for improved catalytic efficiency toward benzaldehyde oxime. The double OxdF1 (L318F/F306Y) mutant effectively catalyzes the conversion of various benzaldoxime derivatives to the corresponding nitriles. Due to the enzyme's inherent instability, immobilized whole-cell systems are employed in a flow reactor to improve its stability and broaden its applicability, with the biotransformation of benzaldehyde oxime and 2,6-difluorobenzaldehyde oxime serving as case studies.
View Article and Find Full Text PDFLiver Int
October 2025
GastroZentrum Hirslanden, Digestive Disease Center, Zürich, Switzerland.
Background And Aims: Cholangiopathies, including primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and post-COVID-19 cholangiopathy (PCC), involve chronic cholangiocyte injury, senescence, epithelial-stromal crosstalk, and progressive fibrosis. However, effective in vitro models to capture these interactions are limited. Here, we present a scaffold-free 3D multilineage spheroid model, composed of hepatocyte-like cells (HepG2), cholangiocytes (H69), and hepatic stellate cells (LX-2), designed to recapitulate early fibrogenic responses driven by senescent cholangiocytes.
View Article and Find Full Text PDF