Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inflammatory bowel diseases (IBDs) are chronic inflammatory conditions of the gastrointestinal tract that are multifactorial in nature. The pathophysiology involves interactions between the host immune system and environmental factors, including the gut microbiota, in genetically predisposed individuals. Advances in understanding these interactions have led to the development of novel therapeutic targets, ranging from anti-TNFα to more recent anti-interleukin 23 treatments. However, some patients still experience resistance to these therapies. Monogenic intestinal diseases (MIDs), which present with more severe symptoms than IBD and typically begin early in life, result from significant disruptions of intestinal homeostasis. MIDs are driven by mutations in a single gene, offering a unique opportunity to explore the mechanisms underlying intestinal homeostasis in health. In this review, we provide a comprehensive overview of the mechanisms of intestinal homeostasis by examining the cellular and molecular features of IBD and MID pathophysiologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12250560PMC
http://dx.doi.org/10.3390/ijms26136133DOI Listing

Publication Analysis

Top Keywords

intestinal homeostasis
16
advances understanding
8
inflammatory bowel
8
monogenic intestinal
8
intestinal
6
understanding intestinal
4
homeostasis
4
homeostasis lessons
4
lessons inflammatory
4
bowel disease
4

Similar Publications

Gastrointestinal eubiosis is essential for maintaining overall host wellbeing. Post-weaning diarrhea (PWD) is a common issue in pig development, arising from weaning stress, which disrupts the gut microbiota balance and increases susceptibility to infections. The primary bacterial pathogen linked to PWD is enterotoxigenic (ETEC).

View Article and Find Full Text PDF

Anti-tumor necrosis factor (TNF) therapy for inflammatory bowel disease (IBD) is hampered by issues of nonresponse and resistance, highlighting the urgent need for alternative or complementary treatments. Our study revealed significant upregulation of taurine in the intestinal tissues of IBD patients, which was inversely related to the severity of the disease. A key discovery was that TNF directly induced taurine synthesis in intestinal epithelial cells and increased the production of angiogenin, a nuclease that degrades mitochondrial RNA, which is known to amplify inflammatory responses.

View Article and Find Full Text PDF

Hepcidin is the key hyposideremic hormone produced primarily by the liver. However, recent reports reveal extra-hepatic functional sources of hepcidin, including the intestine, the site of dietary iron absorption. To determine whether intestinal hepcidin may play a role in plasma iron lowering, we generated transgenic mice overexpressing the peptide specifically in this tissue.

View Article and Find Full Text PDF

Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.

View Article and Find Full Text PDF

Host-pathogen interactions involve two critical strategies: resistance, whereby hosts clear invading microbes, and tolerance, whereby hosts carry high pathogen burden asymptomatically. Here, we investigate mechanisms by which Salmonella-superspreader (SSP) hosts maintain an asymptomatic state during chronic infection. We found that regulatory T cells (Tregs) are essential for this disease-tolerant state, limiting intestinal immunopathology and enabling SSP hosts to thrive, while facilitating Salmonella transmission.

View Article and Find Full Text PDF