Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Concrete printing technologies play a key role in the modernization of construction practices. One factor that mitigates their progress is the development of standards and characterization tools for concrete during printing. The aim of this work is to point out correlations between some printability descriptors of mortars and the data obtained from low-field nuclear magnetic resonance (NMR) relaxometry techniques. In this context, the superposed effects of an acrylic-based superplasticizer and calcium nitrate accelerator were investigated. The mortars under study are based on white Portland cement, fine aggregates, and silica fume at fixed ratios. Extrusion tests and visual inspection of the filaments evaluate the extrudability and the printing window. The selected compositions were also investigated via transverse T2 and longitudinal T1 NMR relaxation times. The results indicate that both additives increase the printing window of the mortar, while the accelerator induces a faster increase in specific surface area of capillary pores S/V only after 30-60 min of hydration. Some correlations were found between the printing window and the range where the transverse relaxation rates 1/T2 and the pore surface-to-volume ratios S/V increase linearly. This suggests some promising connections between NMR techniques and the study of structural buildup of cementitious materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251319 | PMC |
http://dx.doi.org/10.3390/ma18133070 | DOI Listing |