Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Importance: Predicting primary hyperparathyroidism in data may facilitate earlier diagnosis and treatment.

Objective: Primary Hyperparathyroidism (pHPT) is the leading cause of hypercalcemia and up to 75% of hypercalcemic patients go undiagnosed. The purpose of this study was to examine the use of predictive modeling using a large clinical database to predict pHPT in patients with benign thyroid nodules.

Design: Retrospective analysis and predictive modeling of pHPT using a large discharge database. A predictive model of pHPT was created using logistic regression and compared to three machine learning algorithms: a Gaussian naive Bayes classifier, a stochastic gradient descent classifier, and a histogram-based gradient boosting classifier.

Setting: Vizient hospital discharge database from over 1000 hospitals including academic health centers.

Participants: Data from the Vizient Clinical Database (CDB), 2 541 901 patients with benign thyroid nodules were identified between 2020 and 2023, of whom 83 555 (3.29%) had pHPT. INTERVENTION(S) (FOR CLINICAL TRIALS) OR EXPOSURE(S) (FOR OBSERVATIONAL STUDIES): Analyses controlled for demographics (age, sex, race), comorbidities (body mass index (BMI), diabetes, hypertension, smoking status, renal disease) and use of proton pump inhibitors and bisphosphonates.

Main Outcome(s) And Measure(s): The primary outcome measure was the presence of pHPT, which was identified using ICD-10 codes. Model performance was compared using the area under the receiver operating characteristics (ROC) curve.

Results: In the baseline predictive model, several demographic characteristics were significant predictors of pHPT. The logistic regression model had an area under the ROC curve of 68.1%, which was lower than that of the histogram gradient boosting model (68.7%) but equivalent to the gradient descent classifier (68.1%). Furthermore, the logistic regression model correctly classified 80.4% of pHPT cases, compared to 80.5% for both the histogram gradient boosting classifier and the gradient descent classifier. A threshold of 5% yielded a sensitivity of 38.5% and specificity of 81.8% for logistic regression.

Conclusions And Relevance: Predictive modeling of pHPT among patients with benign thyroid nodules is possible using a large clinical database. The predictive equation could be built into decision support systems to alert clinicians to potentially undiagnosed pHPT and aid in timely diagnosis and treatment of pHPT.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hed.28247DOI Listing

Publication Analysis

Top Keywords

predictive modeling
16
patients benign
16
benign thyroid
16
thyroid nodules
12
clinical database
12
logistic regression
12
gradient descent
12
descent classifier
12
gradient boosting
12
phpt
11

Similar Publications

Background: A clear understanding of minimal clinically important difference (MCID) and substantial clinical benefit (SCB) is essential for effectively implementing patient-reported outcome measurements (PROMs) as a performance measure for total knee arthroplasty (TKA). Since not achieving MCID and SCB may reflect suboptimal surgical benefit, the primary aim of this study was to use machine learning to predict patients who may not achieve the threshold-based outcomes (i.e.

View Article and Find Full Text PDF

Background: Organizational virtuousness and just culture, which both foster justice, honesty, and trust, have a major impact on positive work environments in the healthcare industry. Strengthening nurses' emotional engagement and vocational commitment requires these components. With an emphasis on the mediating function of just culture, this study attempts to investigate the relationship between organizational virtuousness and nurses' vocational commitment.

View Article and Find Full Text PDF

Background: Antithrombotic treatment might affect bleeding symptoms, identification of bleeding source and treatment for patients with acute gastrointestinal bleeding. This study aims to investigate possible differences in initial bleeding symptoms, identified bleeding site and treatment of patients with or without antithrombotic medication admitted for gastrointestinal bleeding.

Methods: All consecutive adult patients primarily admitted for gastrointestinal bleeding at Skane University Hospital between 2018-01-01 and 2019-06-31, were included in this study.

View Article and Find Full Text PDF

To evaluate a simplified version of the Clinical Frailty Scale (SCFS) among older adults presenting to the emergency department (ED) with acute dyspnea. In this retrospective single-center cohort study, we included patients from the Acute Dyspnea Study (ADYS) cohort. Severity of illness was assessed using the Medical Emergency Triage and Treatment System (METTS).

View Article and Find Full Text PDF

This study aims to investigate the predictive value of combined phenotypic age and phenotypic age acceleration (PhenoAgeAccel) for benign prostatic hyperplasia (BPH) and develop a machine learning-based risk prediction model to inform precision prevention and clinical management strategies. The study analyzed data from 784 male participants in the US National Health and Nutrition Examination Survey (NHANES, 2001-2008). Phenotypic age was derived from chronological age and nine serum biomarkers.

View Article and Find Full Text PDF