Mechanism of mitofusin 2, mitochondria-associated membrane, and the mitochondrial pathway in alleviating oxidative stress and cell senescence in bovine mammary epithelial cells.

J Dairy Sci

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bovine mastitis is a major challenge in the dairy industry, leading to persistent oxidative stress and mammary epithelial cell senescence, which impairs mammary gland function and hinders milk yield recovery. The mitochondria-associated membrane (MAM), a critical interface between mitochondria and the endoplasmic reticulum, plays an important role in redox balance and mitochondrial homeostasis. This study aimed to investigate the role of MAM in oxidative stress-induced cellular senescence in lactating Holstein dairy cows. We first examined oxidative stress markers and key proteins related to the MAM pathway in mammary tissues using Western blotting and commercial assay kits, and found that MAM pathway alterations were negatively correlated with oxidative stress. Transcriptome analysis further confirmed this association, with differentially expressed genes enriched in the mitochondria-endoplasmic reticulum network. Subsequently, an HO-induced oxidative stress model was established in bovine mammary epithelial cells. The results showed that oxidative stress inhibited MAM formation, promoted mitochondrial fission, and induced cellular senescence. In our previous experiments, we identified mitofusin 2 (MFN2) as a critical regulator in this process. Adenoviral overexpression of MFN2 enhanced MAM formation, alleviated oxidative stress, and delayed senescence. Further investigations revealed that MFN2 undergoes proteasomal degradation under oxidative stress. When the MAM structure was disrupted, MFN2 lost its antioxidative and antisenescence functions, indicating that MAM is essential for its activity. Based on this mechanism, we identified Gracilaria lemaneiformis polysaccharide (GLP) as a potential MFN2 activator. The GLP was found to upregulate MFN2 transcription, inhibit its ubiquitination, and enhance its protein stability. When combined with antibiotic therapy, GLP effectively reduced oxidative stress in mastitic cows, restored mammary gland function, and downregulated the expression of senescence-related markers. These findings suggest that oxidative stress-induced degradation of MFN2 impairs MAM formation, resulting in excessive mitochondrial fission and cellular senescence. Mitofusin 2 overexpression restores MAM integrity and mitigates oxidative stress. Activation of MFN2 by GLP offers a promising therapeutic strategy for mastitis, with potential to reduce recurrence and improve mammary gland health in dairy cows.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2025-26746DOI Listing

Publication Analysis

Top Keywords

oxidative stress
40
oxidative
12
mammary epithelial
12
mammary gland
12
cellular senescence
12
mam formation
12
stress
10
mam
10
mitochondria-associated membrane
8
cell senescence
8

Similar Publications

Heart failure (HF) is a multifactorial and pathophysiological complex syndrome, involving not only neurohormonal activation but also oxidative stress, chronic low-grade inflammation, and metabolic derangements. Central to the cellular defence against oxidative damage is nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that orchestrates antioxidant and cytoprotective responses. Preclinical in vitro and in vivo studies reveal that Nrf2 signalling is consistently impaired in HF, contributing to the progression of myocardial dysfunction.

View Article and Find Full Text PDF

Background: Free radicals play a key role in spinal cord injury and curcumin has the potential to act as an antioxidant agent. Controlled delivery of curcumin can be achieved through encapsulation in bovine serum albumin to form nanoparticles, and acellular scaffold can bridge lesions and improve axonal growth in spinal cord injury.

Objective: In this study, we evaluated the antioxidant effects of the scaffold containing curcumin nanoparticles in the unilateral spinal cord injury model in male rats.

View Article and Find Full Text PDF

Silkworms are emerging as a sustainable food source to address global food security, with their proteins recognized for nutritional and medicinal benefits. However, the impact of silkworm oil on immunological and pharmacological effects remains unexplored. This study explores the effects of the muga (Antheraea assamensis Helfer) silkworm pupal oil fraction (MP) on palmitic acid (PA) induced hepatic steatosis, inflammation, and oxidative stress.

View Article and Find Full Text PDF

Polyphenols, rich in phenolic structures, are widely found in plants and known for disturbing the cellular oxidative stress and regulating the signal pathways of tumor proliferation and metastasis, making them valuable in cancer therapy. Polyphenols display high adherence due to the presence of phenolic hydroxyl groups, which enables the formation of covalent and non-covalent interactions with different materials. However, nonspecific adhesion of polyphenols carries significant risks in applications as polyphenols might adhere to proteins and polysaccharides in the bloodstream or gastrointestinal tract, leading to thrombosis and lithiasis.

View Article and Find Full Text PDF

Limosilactobacillus fermentum CRL2085, isolated from feedlot cattle rations, displayed high efficiency as a probiotic when administered to animals. A comprehensive genomic analysis was performed to elucidate the genetic basis underlying its probiotic potential. Fifteen genomic islands and CRISPR-Cas elements were identified in its genome.

View Article and Find Full Text PDF