A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Biodegradable polymers with tertiary amines enhance mRNA delivery of lipid nanoparticles via improved endosomal escape. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Messenger RNA (mRNA)-based therapy has become a promising and scalable approach for treating various diseases, and lipid nanoparticles (LNPs) have recently gained prominence as a safe and effective delivery vehicle. LNPs not only protect mRNA from degradation during systemic circulation but also facilitate its intracellular uptake and endosomal release. However, the endosomal release efficiency of standard LNPs has been shown to be poor, limiting the transfection efficiency. Here, we explored incorporating a biodegradable polymer which only contains tertiary amines as a pH-sensitive functional group into LNPs, aiming to introduce the proton sponge effect to facilitate the endosomal release. We developed a series of novel LNP formulations by spiking the polymers with different molecular weights into LNPs at a range of ratios. Our results demonstrated that the polymer-modified LNPs (p-LNPs) maintained a particle size of approximately 80 nm, a neutral surface charge, and an mRNA encapsulation efficiency >90 %, along with increased pH buffering capacity. The optimal p-LNP formulation tripled the cellular uptake and enhanced the endosomal escape efficiency from 20 % to 80 % compared to the standard LNPs. Furthermore, cells treated with the p-LNP formulation at 1 mg/mL showed no cytotoxicity. Upon intravenous administration, the optimal p-LNP formulation loaded with luciferase mRNA significantly increased the transgene expression evidenced by a 100-fold increase in luciferin bioluminescence from the liver compared to the standard LNPs. Moreover, p-LNPs did not elevate inflammatory cytokines in the treated mice, including IFN-gamma, IL1β, TNFα, and IL6.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2025.123541DOI Listing

Publication Analysis

Top Keywords

endosomal release
12
standard lnps
12
p-lnp formulation
12
tertiary amines
8
lipid nanoparticles
8
endosomal escape
8
lnps
8
lnps p-lnps
8
optimal p-lnp
8
compared standard
8

Similar Publications