Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Stroke often causes sensorimotor deficits, impairing hand dexterity and disrupting independence for millions worldwide. While rehabilitation devices leveraging visual and haptic feedback show promise, their effectiveness is limited by a lack of perceptual equity, which is necessary to ensure fair comparisons between sensory modalities. This study refines cross-modal matching protocols to address this gap, enabling unbiased evaluation of multimodal feedback. Using the Hand Articulation and Neurotraining Device (HAND), 12 healthy participants matched visual and haptic stimuli in a structured task. A streamlined protocol, requiring just $2-3$ blocks and 3 reference intensities, reduced experimental time fivefold while preserving data integrity. Data were analyzed using linear and exponential models applied to both full and reduced datasets. The results demonstrated consistent participant performance across trials, with higher matching errors at greater stimulus intensities, likely attributable to sensory saturation effects. Furthermore, the study offered practical methodological insights, including the use of reduced data sampling paradigms to enhance experimental efficiency significantly while preserving data integrity. This work advances perceptual equity in multisensory feedback systems, addressing sensory encoding variability to support scalable, personalized therapeutic strategies for stroke recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/ICORR66766.2025.11063112 | DOI Listing |