Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Autophagy is a highly conserved cellular process that plays a crucial role in maintaining cellular homeostasis by degrading damaged organelles, misfolded proteins, and other cellular components. p62/SQSTM1 functions as a selective autophagy receptor by binding polyubiquitinated cargo through its UBA domain and linking it to microtubule-associated protein light chain 3 (LC3)-decorated autophagosomes. Moreover, p62 acts as a signaling hub and is essential in response to various stressors, including nutrient deprivation and oxidative stress. Post-translational modifications (PTMs) critically regulate p62's multifaceted roles, controlling p62's phase separation, cargo recruitment, signaling interactions, and autophagic degradation efficiency. The dysregulation of p62 PTMs is closely related to the occurrence and development of human diseases, particularly neurodegenerative disorders and certain cancers. This review summarizes the main PTM events of p62 discovered to date that influence the autophagy process, including phosphorylation, acetylation, ubiquitination, and S-acylation, as well as their known contributions to protein aggregation and disease. The PTMs of p62 dynamically regulate autophagy, protein aggregation, and cellular signaling, underscoring its importance as a potential therapeutic target and biomarker for these diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12249475 | PMC |
http://dx.doi.org/10.3390/cells14131016 | DOI Listing |