98%
921
2 minutes
20
Chronic, non-resolving inflammation is a major contributor to impaired wound healing in diabetes. Annexin A1 (AnxA1), a pro-resolving mediator, and its mimetic peptide Ac have demonstrated therapeutic potential in modulating inflammatory responses. In this study, we evaluated the effects of topical Ac hydrogel in a streptozotocin-induced diabetic wound model. Treatment significantly accelerated wound closure, improved tissue architecture, and reduced leukocyte infiltration. Immunohistochemical analysis revealed diminished mast cell accumulation and IL-1β expression in treated wounds. Complementary transcriptomic profiling supported the downregulation of pro-inflammatory genes, including Il1b and mast cell-related mediators, confirming the peptide's regulatory effect on the wound immune landscape. Mounting evidence suggests that dysregulated mast cell activity plays a role in the heightened inflammatory tone and delayed tissue repair observed in diabetic wounds. In our model, Ac hydrogel treatment attenuated IL-1β expression, suggesting an indirect downregulation of NLRP3 inflammasome activation, potentially mediated through mast cell modulation, though effects on other cell types within the wound microenvironment cannot be excluded. While definitive causality cannot be assigned, the integration of histological and transcriptomic data highlights mast cells as contributors to the IL-1β-driven inflammatory burden in diabetic wounds. These findings underscore the immunomodulatory capacity of Ac and its potential to restore resolution pathways in chronic wound settings, positioning it as a promising candidate for future therapeutic development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12249181 | PMC |
http://dx.doi.org/10.3390/cells14130999 | DOI Listing |
J Craniofac Surg
September 2025
Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta.
Purpose: To demonstrate the use of negative pressure wound therapy (NPWT) and other reconstructive techniques in the reconstruction of large tissue defects resulting from periocular necrotizing fasciitis (NF).
Methods: Description of technique with 3 illustrative cases and accompanying photographic montage.
Results: Technique: Debridement successfully spared post-septal tissues and the lid margin in all cases.
Adv Exp Med Biol
September 2025
Department of Stem Cells & Regenerative Medicine, Center for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India.
Wound healing is a dynamic and complex process that consists of four interconnected phases: hemostasis, inflammation, proliferation, and remodeling. This complex process is based on the coordinated actions of growth factors, cytokines, and other cellular interactions. However, conditions such as diabetes and chronic illnesses can disrupt this process and lead to nonhealing wounds or chronic ulcers.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Bioengineering, Yildiz Technical University, Istanbul, 34722, Turkey.
Conductive nanocomposite hydrogels (CNHs) represent a promising tool in neural tissue engineering, offering tailored electroactive microenvironments to address the complex challenges of neural repair. This systematic scoping review, conducted in accordance with PRISMA-ScR guidelines, synthesizes recent advancements in CNH design, functionality, and therapeutic efficacy for central and peripheral nervous system (CNS and PNS) applications. The analysis of 125 studies reveals a growing emphasis on multifunctional materials, with carbon-based nanomaterials (CNTs, graphene derivatives; 36.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Plastic Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.
Diabetic infected wounds represent a formidable clinical challenge characterized by persistent hyperglycemia-induced pathological cascades that disrupt normal healing processes through multiple mechanisms including chronic inflammation, oxidative stress, and microvascular dysfunction. As prototypical chronic wounds, they exhibit severely impaired tissue regeneration due to this multifaceted dysfunction in both skin architecture and biological function. Metal-organic frameworks (MOFs) have emerged as promising next-generation therapeutic platforms owing to their exceptional structural tunability, multifunctional properties, and precise spatiotemporal drug delivery capabilities.
View Article and Find Full Text PDFCureus
August 2025
General Surgery, Sree Balaji Medical College and Hospital, Chennai, IND.
Background Diabetic foot ulcers (DFUs) are a major complication of diabetes, posing significant challenges due to impaired wound healing, increased infection risk, and frequent need for surgical intervention. Optimal wound care is essential to reduce morbidity, hospital stay, and healthcare costs. While povidone iodine is a common antiseptic dressing, Metrogyl (metronidazole) targets anaerobic bacteria and may offer superior outcomes in chronic, infected wounds.
View Article and Find Full Text PDF