Breathable Nanorod-Embedded Hierarchical Photothermal Coatings with Anti-Soiling and Safe Thermal Regulation for Efficient Anti-Icing and De-Icing.

Small

The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Advanced Polymeric Materials, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Photothermal hydrophobic surfaces offer a promising solution for mitigating ice hazards under low-temperature, high-humidity conditions via solar-driven de-icing. However, surface contamination can compromise photothermal efficiency, while fabric-applicable coatings must also provide flexibility, breathability, durability, and safe thermal regulation (≈50 °C). Current systems require further optimization to balance these demands for practical use. Here, a nanorod-embedded photothermal strategy is presented that integrates superhydrophobicity, anti-icing, and de-icing capabilities with environmental robustness in fabrics. The composite comprises a polypyrrole-loaded cellulose nanocrystal inner layer for photothermal conversion and a fluoroalkyl silane-modified silica top layer for superhydrophobicity. The synergy between hierarchical micro-nano roughness and photothermal activation enables an "external repellency, internal heating" mechanism, effectively overcoming the limitations of passive coatings. This dual-functional architecture achieves a solar absorption rate of 97.2% and reaches 53.1 °C under 100 mW cm⁻ irradiation, while remaining safe for human contact and maintaining breathability (moisture permeability: 6.86 × 10 g·m⁻·d⁻¹). It delays freezing by 417 s at -15 °C and reduces the melting time of an ice cube by 53.2% under 1-sun illumination. The fabric exhibits appreciable chemical stability, abrasion resistance, flexibility, and robustness under extreme conditions, ensuring long-term performance. This work offers a scalable solution for outdoor and personal protective equipment in cold environments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202506234DOI Listing

Publication Analysis

Top Keywords

safe thermal
8
thermal regulation
8
anti-icing de-icing
8
photothermal
6
breathable nanorod-embedded
4
nanorod-embedded hierarchical
4
hierarchical photothermal
4
photothermal coatings
4
coatings anti-soiling
4
anti-soiling safe
4

Similar Publications

ObjectiveRecurrent varicose veins (RVVs) following open surgical procedures are common and present significant treatment challenges. Redo open surgery (rOS) presents risks leading to a need for alternative treatment options. This study compares the safety and efficacy of ultrasound-guided foam sclerotherapy (UGFS), used to treat recurrent reflux and remove neovascular and tributary venous networks in the thigh, to redo open surgery (rOS) for the treatment of C2r.

View Article and Find Full Text PDF

Sepiolite (SP) is a naturally occurring sedimentary silicate clay mineral known for its unique structure, high surface area, and rich surface chemistry, particularly silanol groups (Si-OH), which facilitate strong interfacial interactions in polymer matrices. Its ability to act as a nanofiller has gained attention in the development of advanced biopolymer nanocomposites, especially for food packaging applications where material performance, sustainability, and safety are critical. SP enhances the thermal stability, barrier properties, and mechanical strength of starch and other biopolymer matrices, key factors in extending shelf life.

View Article and Find Full Text PDF

With the rapid advancement in autonomous vehicles, 5G and future 6G communications, medical imaging, spacecraft, and stealth fighter jets, the frequency range of electromagnetic waves continues to expand, making electromagnetic interference (EMI) shielding a critical challenge for ensuring the safe operation of equipment. Although some existing EMI shielding materials offer lightweight construction, high strength, and effective shielding, they struggle to efficiently absorb broadband electromagnetic waves and mitigate dimensional instability and thermal stress caused by temperature fluctuations. These limitations significantly reduce their service life and restrict their practical applications.

View Article and Find Full Text PDF

Background: Premature ventricular contractions (PVCs) originating from the infundibular region of the right ventricular outflow tract (RVOT) may be challenging to ablate due to thin myocardial wall and proximity to the coronary arteries in this region. In such anatomically sensitive regions, the use of radiofrequency (RF) energy may carry a risk of collateral injury or prove ineffective. We present a case report describing successful ablation of infundibular PVCs using pulsed field ablation (PFA).

View Article and Find Full Text PDF

Dual Lithium Salt Derived Favorable Interface Layer Enables High-Performance Polycarbonate-Based Composite Electrolytes for Stable and Safe Solid Lithium Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.

Developing solid electrolytes with high ionic conductivity, a high voltage window, low flammability, and excellent interface compatibilities with both the anode and cathode for lithium-metal batteries is still a great challenge but highly desirable. Herein, we achieve this target through an in situ copolymerization of vinyl ethylene carbonate (VEC) together with acrylonitrile (AN) under fitting ratios inside a porous polyacrylonitrile (PAN) fiber membrane doped with flame-retardant decabromodiphenyl ethane (DBDPE) molecules. The received fiber-reinforced polycarbonate-based composite electrolyte with an ultrathin thickness of 13 μm exhibits good internal interfacial compatibility because of the same AN structure and superior flame-retardant performance due to the doped DBDPE molecules.

View Article and Find Full Text PDF