98%
921
2 minutes
20
Introduction: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects motor neurons in the spinal cord and brain. We have developed a novel non-invasive approach, MultiPath-DCS, which utilizes direct current stimulation at multiple sites along the neural axis to provide simultaneous spinal and peripheral stimulation targeted at the affected limbs. MultiPath-DCS modulates the excitability of spinal cord neurons. This effect is significant for ALS, as motor neuron hyperexcitability is a fundamental characteristic of the disease.
Methods: This study used a transgenic mouse model of ALS (SOD1-G93A). Anodal-MultiPath-DCS was applied with six electrodes: three on the spine (centered on T13 and with an anodal polarity), two on the sciatic nerves (one on each nerve), and one on the abdomen. Mice were divided into two groups (stimulated vs. unstimulated or sham-stimulated). The stimulated animals received stimulation for one hour a day, three times a week, for three weeks. Survival was calculated from the onset of the disease and birth until the animal's endpoint. We also performed various electrophysiological and molecular experiments to uncover the mechanism of action.
Results: We demonstrated molecular changes induced by anodal MultiPath-DCS, including (a) reduced expression of mutant SOD1 protein, (b) decreased expression of elevated NKCC1, (c) reduced phosphorylated tau, (d) increased expression of HSP70, and (e) increased expression of LC3B. Additionally, we found that treatment with Anodal-MultiPath-DCS (anode on the spinal column) reduces long-term neuronal spinal excitability, slows the progression of muscle weakness, and extends the lifespan of stimulated mice. The mean survival time in the control group was 12.4 days. In comparison, the mean survival time in the stimulated group was 21.6 days using a therapeutic stimulation paradigm, representing a 74% increase in survival from disease onset. Spinal motor neuron survival showed a 54% increase in stimulated compared to non-stimulated groups.
Discussion: Combined, this data provides evidence that Anodal-MultiPath-DCS reduces hyperexcitability and enhances the clearance of misfolded proteins by modulating autophagy and proteolytic systems. By decreasing spinal excitability and clearing toxic proteins from motor neurons, Anodal-MultiPath-DCS promotes survival and could serve as a disease-modifying intervention for ALS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241670 | PMC |
http://dx.doi.org/10.3389/fneur.2025.1594169 | DOI Listing |
Biochem Soc Trans
September 2025
Department of Biochemistry, McGill University, Montréal, QC, Canada.
The MET receptor tyrosine kinase is a pivotal regulator of cellular survival, motility, and proliferation. Mutations leading to skipping of exon 14 (METΔex14) within the juxtamembrane domain of MET impair receptor degradation and prolong oncogenic signaling, contributing significantly to tumor progression across multiple cancer types. METΔex14 mutations are associated with aggressive clinical behavior, therapeutic resistance, and poor outcomes.
View Article and Find Full Text PDFBrain
September 2025
Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, 13005 Marseille, France.
The lateral prefrontal cortex (LPFC) serves as a critical hub for higher-order cognitive and executive functions in the human brain, coordinating brain networks whose disruption has been implicated in many neurological and psychiatric disorders. While transcranial brain stimulation treatments often target the LPFC, our current understanding of connectivity profiles guiding these interventions based on electrophysiology remains limited. Here, we present a high-resolution probabilistic map of bidirectional effective connectivity between the LPFC and widespread cortical and subcortical regions.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America.
Research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is key to overcoming experimental limitations in humans and essential to building a detailed understanding of the in-vivo consequences of tES. Insights from such animal models are needed to develop targeted and effective therapeutic applications of non-invasive brain stimulation in humans. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies.
View Article and Find Full Text PDFPLoS One
September 2025
Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.
MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.
View Article and Find Full Text PDFFolia Phoniatr Logop
September 2025
Introduction There is no definitive, comprehensive guide for diagnosing stuttering in multilingual speakers, and research suggests that monolingual-based diagnostic criteria may lead to misidentification in this population. This systematic review aimed to identify and consolidate conventional diagnostic guidelines for multilingual speakers and evaluate their validity in light of empirical evidence on stuttering and multilingualism. Method A systematic review was conducted using PubMed, Science Direct, SAGE, CINAHL, and Google Scholar using specific MESH terms (e.
View Article and Find Full Text PDF