Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objectives: To investigate the value of multi-model based on preoperative CT scans in predicting EGFR/TP53 co-mutation status.
Methods: We retrospectively included 2171 patients with non-small cell lung cancer (NSCLC) with pre-treatment computed tomography (CT) scans and predicting epidermal growth factor receptor (EGFR) gene sequencing from West China Hospital between January 2013 and April 2024. The deep-learning model was built for predicting EGFR / tumor protein 53 (TP53) co-occurrence status. The model performance was evaluated by area under the curve (AUC) and Kaplan-Meier analysis. We further compared multi-dimension model with three one-dimension models separately, and we explored the value of combining clinical factors with machine-learning factors. Additionally, we investigated 546 patients with 56-panel next-generation sequencing and low-dose computed tomography (LDCT) to explore the biological mechanisms of radiomics.
Results: In our cohort of 2171 patients (1,153 males, 1,018 females; median age 60 years), single-dimensional models were developed using data from 1,055 eligible patients. The multi-dimensional model utilizing a Random Forest classifier achieved superior performance, yielding the highest AUC of 0.843 for predicting EGFR/TP53 co-mutations in the test set.
Conclusion: The multi-dimensional model demonstrates promising potential for non-invasive prediction of EGFR and TP53 co-mutations, facilitating early and informed clinical decision-making in NSCLC patients at risk of treatment resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12243385 | PMC |
http://dx.doi.org/10.1186/s12890-025-03805-8 | DOI Listing |