Chemical Probe Discovery for DEAD-Box RNA-Binding Protein DDX21 Using Small-Molecule Microarrays.

ACS Chem Biol

Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The DEAD-box family of ATPases plays a critical role in nearly all stages of RNA metabolism, from transcription to degradation, and serves as a major regulator of biomolecular condensates. Dysregulation of DEAD-box proteins is well-established in a variety of diseases, including cancer and neurodegenerative disorders, making them attractive therapeutic targets. However, their classification as "undruggable" has historically hindered small-molecule-based modulation. In this study, we focus on DDX21, a member of the DEAD-box family involved in ribosome biogenesis and transcription regulation. As a proof of concept for targeting such RNA-binding proteins, we developed a lysate-based small-molecule microarray platform to identify compounds that directly bind DDX21. This screen led to the discovery of KI-DX-014, a small-molecule compound capable of inhibiting the interaction of DDX21 with RNA. KI-DX-014 modulated the RNA-dependent functions of DDX21, including its ATPase activity and biomolecular condensate formation. Furthermore, KI-DX-014 attenuated the DDX21-dependent release of P-TEFb from the 7SK snRNP complex , suppressed P-TEFb-dependent phosphorylation of the RNA polymerase II CTD, and induced developmental defects in zebrafish embryos. These findings reveal a previously unexploited therapeutic avenue and establish KI-DX-014 as a chemical probe for dissecting the biological functions of DDX21 in both normal physiology and disease states.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschembio.5c00302DOI Listing

Publication Analysis

Top Keywords

chemical probe
8
dead-box family
8
functions ddx21
8
ddx21
6
probe discovery
4
dead-box
4
discovery dead-box
4
dead-box rna-binding
4
rna-binding protein
4
protein ddx21
4

Similar Publications

Paraptosis is a distinct form of programmed cell death characterized by cytoplasmic vacuolization, mitochondrial swelling, and endoplasmic reticulum (ER) dilation, offering an alternative to apoptosis for therapeutic applications. In this study, we identified a hemicyanine derivative that is a potent paraptosis inducer in two cancer cell lines. This compound triggers hallmark paraptotic features, including ER swelling, mitochondrial morphological changes, increased superoxide production, and caspase-independent cell death.

View Article and Find Full Text PDF

Energy deficiency selects crowded live epithelial cells for extrusion.

Nature

September 2025

The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London, UK.

Epithelial cells work collectively to provide a protective barrier, yet they turn over rapidly through cell division and death. If the numbers of dividing and dying cells do not match, the barrier can vanish, or tumours can form. Mechanical forces through the stretch-activated ion channel Piezo1 link both of the processes; stretch promotes cell division, whereas crowding triggers live cells to extrude and then die.

View Article and Find Full Text PDF

The electrolyte-electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid-electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs). However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge.

View Article and Find Full Text PDF

A triphenyl-imidazole end-capped donor-acceptor type potential molecular probe 3 has been designed and synthesized. Probe 3 upon interaction with different classes of metal ions/anions and NPPs displayed high selectivity with CN anion (LOD = 20.42 nM) through fluorescence "turn-Off" response and a naked-eye sensitive visible color change.

View Article and Find Full Text PDF

Structural Elucidation and Covalent Modulation of the Autorepressed Orphan Nuclear Receptor NR2F6.

ACS Chem Biol

September 2025

Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Technische Universiteit Eindhoven, 5612 AZ Eindhoven, The Netherlands.

The orphan nuclear receptor NR2F6 (Nuclear Receptor subfamily 2 group F member 6) is an emerging therapeutic target for cancer immunotherapy. Upregulation of NR2F6 expression in tumor cells has been linked to proliferation and metastasis, while in immune cells NR2F6 inhibits antitumor T-cell responses. Small molecule modulation of NR2F6 activity might therefore be a novel strategy in cancer treatment, benefiting from this dual role of NR2F6.

View Article and Find Full Text PDF