A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Deep learning-based automatic detection and grading of disk herniation in lumbar magnetic resonance images. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Magnetic resonance imaging of the lumbar spine is a key technique for clarifying the cause of disease. The greatest challenges today are the repetitive and time-consuming process of interpreting these complex MR images and the problem of unequal diagnostic results from physicians with different levels of experience. To address these issues, in this study, an improved YOLOv8 model (GE-YOLOv8) that combines a gradient search module and efficient channel attention was developed. To address the difficulty of intervertebral disc feature extraction, the GS module was introduced into the backbone network, which enhances the feature learning ability for the key structures through the gradient splitting strategy, and the number of parameters was reduced by 2.1%. The ECA module optimizes the weights of the feature channels and enhances the sensitivity of detection for small-target lesions, and the mAP50 was improved by 4.4% compared with that of YOLOv8. GE-YOLOv8 demonstrated the significance of this innovation on the basis of a P value <.001, with YOLOv8 as the baseline. The experimental results on a dataset from the Pingtan Branch of Union Hospital of Fujian Medical University and an external test dataset show that the model has excellent accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241562PMC
http://dx.doi.org/10.1038/s41598-025-10401-7DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
8
deep learning-based
4
learning-based automatic
4
automatic detection
4
detection grading
4
grading disk
4
disk herniation
4
herniation lumbar
4
lumbar magnetic
4
resonance images
4

Similar Publications