Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sodium vanadium fluorophosphate (NaVO(PO)F, NVOPF), with a NASICON framework, is a promising cathode material due to its robust 3D structure, high operating potential (∼3.8 V), and theoretical energy density (≈494 Wh kg). However, its commercial viability is limited by low electronic conductivity and a reduced practical energy density. To address these limitations, vanadium in NVOPF is partially substituted with cost-effective Mn and Cr via a one-pot solvothermal method. This co-doping induces lattice distortion, enhances Na⁺ diffusion kinetics, and improves ionic/electronic conductivity, as confirmed by DFT calculations. The optimized NaVMnCrO(PO)F (NVMC-95) cathode delivers an initial discharge capacity of 120 mAh g at 0.1 C and 87 mAh g at 20 C, with 94% capacity retention after 500 cycles at 1 C and 76% after 2000 cycles at 5 C. The co-doped NVOPF exhibits excellent thermal stability at 40 °C, retaining 91% of its capacity over 400 cycles at 2 C. In a full-cell configuration (NVMC-95//hard carbon), the system delivers 110 mAh g⁻¹ at 3.75 V, retaining 97% capacity over 100 cycles at 0.2 C. Mn/Cr co-doping synergy in NaVO(PO)F enhances Na⁺ transport, reduces impedance, accelerates diffusion kinetics, and stabilizes cycling, enabling durable NASICON-type cathodes with extended cycle life for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202504006DOI Listing

Publication Analysis

Top Keywords

promising cathode
8
energy density
8
enhances na⁺
8
diffusion kinetics
8
synergistic mn-cr
4
mn-cr co-doping
4
co-doping navpoof
4
navpoof promising
4
cathode unlocking
4
unlocking superior
4

Similar Publications

Controlling Chloride Crossover in Bipolar Membrane Water Electrolysis.

ACS Electrochem

September 2025

Department of Material Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Bipolar membranes (BPMs) are increasingly recognized as a promising electrolyte option for water electrolysis, attributable to their distinctive properties derived from the membrane's layered structure, which consists of an anion exchange (AEL) and a cation exchange layer (CEL). This study investigates four different BPMs and the influence they have on the performance of a water electrolysis cell under two different feed configurations: (1) a symmetric deionized water feed to both anode and cathode compartments and (2) an asymmetric feed with a 0.5 mol/L NaCl catholyte feed and a deionized water anolyte feed.

View Article and Find Full Text PDF

Parylene-coated platinum nanowire electrodes for biomolecular sensing applications.

Beilstein J Nanotechnol

August 2025

Department of Physics & Engineering Physics, Morgan State University, Baltimore, MD 21251, USA.

Nanoscale biosensors have gained attention in recent years due to their unique characteristics and size. Manufacturing steps, cost, and other shortcomings limit the widespread use and commercialization of nanoscale electrodes. In this work, a nano-size electrode fabricated by directed electrochemical nanowire assembly and parylene-C insulation is introduced.

View Article and Find Full Text PDF

Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) owing to abundant resources and cost-effectiveness. However, cathode materials face persistent challenges in structural stability, ion kinetics, and cycle life. This review highlights the transformative potential of high-entropy (HE) strategies that leveraging multi-principal element synergies to address these limitations entropy-driven mechanisms.

View Article and Find Full Text PDF

Single-Molecule Dual-Anchor Design Enables Extreme-Condition Lithium Metal Batteries Through Solvation Reconstruction and Cathode Polymerization.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, P.R. China.

Lithium metal batteries (LMBs) have emerged as the most promising candidate for next-generation high-energy-density energy storage systems. However, their practical implementation is hindered by the inability of conventional carbonate electrolytes to simultaneously stabilize the lithium metal anode and LiNiCoMnO (NCM811) cathode interfaces, particularly under extreme operating conditions. Herein, we present a transformative molecular design using 3,5-difluorophenylboronic acid neopentyl glycol ester (DNE), which uniquely integrates dual interfacial stabilization mechanisms in a single molecule.

View Article and Find Full Text PDF