98%
921
2 minutes
20
This study develops a coupled computational fluid dynamics (CFD) and discrete element method (DEM) two-phase flow model to investigate particle deposition behaviors in industrial pipeline transportation of edible chili oil, a high-viscosity fluid widely used in food industries. Due to its complex rheological properties and the presence of suspended solids, chili oil pipelines frequently face significant challenges, including excessive particle deposition at pipe bends, increased pressure drops, and energy inefficiency. To address these critical issues, simulations were systematically conducted using the Realizable k-ε turbulence model, examining the effects of different inlet velocities (0.5-2.5 m/s), particle sizes (2-4 mm), and particle shapes (spherical, rod-shaped, and cubic). Results showed that operating the pipeline within an optimal transport velocity range of approximately 1.0-1.5 m/s effectively minimized particle accumulation at bends and significantly reduced pressure losses. Quantitatively, spherical particles exhibited the lowest pressure drop increase (from approximately 3.45 kPa at 0.5 m/s to 21.78 kPa at 2.5 m/s) due to reduced collision frequencies and kinetic energy dissipation. In contrast, irregular particles (cubic shapes) led to the highest pressure drops, rising sharply from 5.91 kPa at 0.5 m/s up to 34.56 kPa at 2.5 m/s, caused by frequent collisions and turbulent fluctuations. Additionally, simulations revealed that increasing particle size from 2 to 4 mm notably decreased particle deposition and pressure losses due to reduced collision frequency and enhanced momentum transfer. These quantitative findings not only fill the research gap concerning high-viscosity, particulate-laden edible fluid systems but also provide concrete and practical guidelines for optimizing chili oil transport processes. The findings directly contribute to improved operational reliability, lower energy consumption, and reduced blockage risks in industrial food pipeline applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238575 | PMC |
http://dx.doi.org/10.1038/s41598-025-09254-x | DOI Listing |
Phys Rev Lett
August 2025
University of Zürich, Department of Physics, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
We present the first results from the Quantum Resolution-Optimized Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE). The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption, and is sensitive to energy deposits as low as 0.11 eV.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Università degli Studi di Padova, Dipartimento di Fisica e Astronomia, Via Marzolo 8, 35131 Padova, Italy.
Feebly interacting particles, such as sterile neutrinos, dark photons, and axions, can be abundantly produced in the proto-neutron star (PNS) formed in core-collapse supernovae (CCSNe). These particles can decay into photons or charged leptons, depositing energy outside the PNS. Strong bounds on new particles can thus be derived from the observed luminosity of CCSNe, with even tighter bounds obtained from low-energy SNe observations.
View Article and Find Full Text PDFHealth Phys
September 2025
Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
External exposure due to secondary photons (predominantly bremsstrahlung) generated from electron source emissions in environmental soil are of concern due to their ability to deposit significant amounts of ionizing energy to organs and tissues within the body. The "condensed history method" employed in many modern Monte Carlo (MC) codes may be used to simulate secondary photon yields (given as photons per beta decay) arising from electron source emissions with relatively few assumptions regarding the secondary photon spatial, energy, and angular dependencies. These yields may in turn be used to derive protection quantities such as secondary photon effective dose rate (DR) and risk coefficients for a variety of idealized external exposure scenarios.
View Article and Find Full Text PDFSmall
September 2025
Key Laboratory of Electrochemical Power Sources of Hubei Province, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
Hybrid artificial layer based on inorganic/polymer composite endows superior toughness and mechanical strength, which can achieve high stability of lithium metal anode. However, the large particle size and uneven distribution of inorganic fillers hinder the uniform flow of lithium ions across the membrane, making it difficult to achieve smooth lithium metal deposition/stripping. In this work, a chemical lithiation-induced defluorination strategy is proposed to engineer poly(vinylidene difluoride) (PVDF)-based artificial layers, enabling in situ incorporation of highly dispersed LiF nanofiller within the polymer matrix and precise control over the LiF content.
View Article and Find Full Text PDFIndian J Nucl Med
August 2025
Department of Physics, Shi.C., Islamic Azad University, Shiraz, Iran.
Background: Another approach to improve the dose conformity is to use charged particles like protons instead of the conventional X- and γ-rays. Protons exhibit a specific depth-dose distribution which allows to achieve a more targeted dose deposition and a significant sparing of healthy tissue behind the tumor. In particular, proton therapy has, therefore, become a routinely prescribed treatment for tumors located close to sensitive structures.
View Article and Find Full Text PDF