Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Probiotics offer therapeutic benefits by modulating the local microbiome, the host immune response, and the proliferation of pathogens. Probiotics have the potential to treat complex diseases, but their persistence or colonization is required at the target site for effective treatment. Although probiotic persistence can be achieved by repeated delivery, no biomaterial that releases clinically relevant doses of metabolically active probiotics in a sustained manner has been previously described. Here, we encapsulate stiff probiotic microorganisms within relatively less stiff hydrogels and show a generic mechanism where these microorganisms proliferate and induce hydrogel fracture, resulting in microbial release. Importantly, this fracture-based mechanism leads to microorganism release with zero-order release kinetics. Using this mechanism, small (∼1 μL) engineered living materials (ELMs) release >10 colony-forming-units (CFUs) of in 2 h. This release is sustained for at least 100 days. Cell release can be varied by more than 3 orders of magnitude by varying initial cell loading and modulating the mechanical properties of the encapsulating matrix. As the governing mechanism of microbial release is entirely mechanical, we demonstrate the controlled release of model Gram-negative, Gram-positive, and fungal probiotics from multiple hydrogel matrices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278213PMC
http://dx.doi.org/10.1021/acsami.5c11155DOI Listing

Publication Analysis

Top Keywords

controlled release
8
engineered living
8
living materials
8
release
8
microbial release
8
release microorganisms
4
microorganisms engineered
4
probiotics
4
materials probiotics
4
probiotics offer
4

Similar Publications

Proto-SLIPS: Slippery Liquid-Infused Surfaces that Release Highly Water-Soluble Agents.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.

Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.

View Article and Find Full Text PDF

Photoremovable protecting groups (PRPGs) enable precise spatiotemporal control over molecular release and functional activation. Recent advances have introduced wavelength-selective systems for sequential deprotection, broadening applications in drug delivery, material synthesis, and photopolymerization. In parallel, PRPGs play a crucial role in photobase generators (PBGs) and photoacid generators (PAGs), enabling oxygen-tolerant, spatially controlled polymerization and depolymerization through light-induced base and acid release.

View Article and Find Full Text PDF

Background: Gynecologic enhanced recovery after surgery (ERAS) pathways have been developed to reduce postoperative narcotic use through multimodal pain management. While incisional injection of local anesthetic is standard practice, regional nerve blockades using liposomal agents are emerging as a promising adjunct technique for post-laparoscopy pain. Current data are conflicting regarding the benefits of regional nerve blocks on postoperative pain after laparoscopic hysterectomy.

View Article and Find Full Text PDF

Microbial spoilage and oxidation are significant causes of food deterioration, contributing to food waste of up to 30%. To mitigate these losses, active food packaging is an effective solution. Considering the excellent properties of nanofibers produced by electrospinning, integrating active food packaging functionality with nanofiber technology offers an ideal approach enhancing preservation.

View Article and Find Full Text PDF

Background: The advent of artificial intelligence (AI) tools in oncology to support clinical decision-making, reduce physician workload and automate workflow inefficiencies yields both great promise and caution. To generate high-quality evidence on the safety and efficacy of AI interventions, randomised controlled trials (RCTs) remain the gold standard. However, the completeness and quality of reporting among AI trials in oncology remains unknown.

View Article and Find Full Text PDF