98%
921
2 minutes
20
Deep eutectic solvents (DESs) have extensive applications in metal processing, organic reaction and extraction, and other fields due to their advantages of facile preparation, environmental compatibility, and non-toxicity. Matrine (Mat) and fatty acids (FAs) are widely used in pharmaceuticals and cosmetics because of their rich biological activities. In this study, Mat-FA DESs (DESs formed by Mat and FAs) are prepared and the corresponding microscopic mechanism for the formation of DESs is elucidated at molecular level systematically by experiments and molecular dynamics (MD) simulations. The results reveal that the Mat-FA interaction is stronger than that between the components themselves, which makes the melting point of the mixture lower than the theoretical eutectic point, and the hydrogen bonding in the system is positively correlated with the deviation of the melting point from the theoretical eutectic point, and the systems with stronger hydrogen bonding are more prone to form DESs with a melting point below 25 °C. Notably, when the interaction of FA-FA is weaker in the system, the DESs also can be observed at higher FA concentrations. In addition, the DES aqueous solutions exhibit different phase behaviors, which can be adjusted on purpose by changing the DES concentration. The phase behavior of DES aqueous solutions is closely related to molecular interactions. The stronger molecular interactions in DES aqueous solutions favor the formation of gels with better mechanical performance. The present work not only provides a theoretical basis for understanding the formation of Mat-FA DESs but also extends the potential applications of DES systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0272132 | DOI Listing |
Discov Nano
September 2025
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Promoter-assisted chemical vapor deposition (CVD) has emerged as a robust strategy for the low-temperature synthesis of diverse transition metal dichalcogenides (TMDs). In these processes, promoter-induced intermediates facilitate specific reaction pathways, enabling controlled growth via vapor-solid-solid (VSS) or vapor-liquid-solid (VLS) modes. While previous studies have primarily focused on transition metal precursors, growth pathways involving engineered chalcogen-based intermediates remain underexplored due to their volatility and low melting points.
View Article and Find Full Text PDFJ Mass Spectrom
October 2025
Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, Rome, Italy.
Ionic liquids (ILs) are a class of organic salts with melting points below 100°C. Owing to their unique chemical and physical properties, they are used as solvents and catalysts in various chemical transformations, progressively replacing common volatile organic solvents (VOCs) in green synthetic applications. However, their intrinsic ionic nature can restrict the use of mass spectrometric techniques to monitor the time progress of a reaction occurring in an IL medium, thus preventing one from following the formation of the reaction products or intercepting the reaction intermediates.
View Article and Find Full Text PDFNanoscale Adv
July 2025
University of Kentucky, Department of Chemical and Materials Engineering 177 F.P. Anderson Tower Lexington Kentucky 40506-0046 USA
The crystallization behavior of ionic liquids (ILs) 1-butyl-3-methylimidazolium [BMIM] hexafluorophosphate [PF] and chloride [Cl] is investigated upon confinement in 2.3 or 8.2 nm diameter silica nanopore arrays, along with the effects of covalently modifying the pore walls with 1-(3-trimethoxysilylpropyl)3-methylimidazolium [TMS-MIM] groups.
View Article and Find Full Text PDFArch Microbiol
September 2025
Department of Biological Sciences, Wichita State University, 26, 1845 Fairmount, Wichita, KS, 67260, USA.
Freezing point depression due to high salt concentration is crucial for liquid water to exist on cold worlds, expanding special regions where habitats are plausible. Determination of the growth tolerances of terrestrial microbes in analog systems impacts planetary protection protocols aimed at preventing interference with life detection missions or potential native ecosystems on celestial bodies. We measured the salinity tolerances of 18 salinotolerant bacteria (Bacillus, Halomonas, Marinococcus, Nesterenkonia, Planococcus, Salibacillus, and Terribacillus).
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department Chemie- und Bioingenieurwesen, Lehrstuhl für Chemische Reaktionstechnik (CRT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, 91058, Erlangen, Germany.
The supported catalytically active liquid metal solution (SCALMS) concept is based on catalytically active metals dissolved in a low-melting-point liquid metal matrix. These solid alloy particles, deposited over a high area support, transform into a liquid alloy under reaction conditions. In this work, GaPt SCALMS materials of varying composition are investigated and focus on the change in the alloy composition during preheating, the actual high temperature propane dehydrogenation at 823 K, and after cool-down.
View Article and Find Full Text PDF