Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sarcopenia is a condition that affects one's activities of daily livingand is rapidly increasing with the ages of the global population. However, the basic molecular mechanisms for prevention and treatment are not fully understood. Although rodent model animals have many valuable aspects for studying sarcopenia, some aspects and mechanisms differ from humans, such as immune response, metabolism, stress response, and myofiber composition. This study established a human cell-based in vitro model to elucidate the molecular mechanism by which SASP from senescence-induced human mesenchymal stem cells led to the narrowing of human myotube diameter, suggesting that this model is useful for studying sarcopenia. Gene expression profiling was performed the molecular mechanisms and devel on the model by RNA sequencing to identify genes whose expression was affected by SASP. Among these, the exposure to SASP upregulated PDK4 expression, and a PDK4 inhibitor, DCA, could increase myotube diameter and reverse SASP-mediated narrowing of the diameter. Pathway analyses suggested that SASP affected energy metabolism by activating OXPHOS and promoting the expression of mitochondrial function-related genes and mitochondrial biosynthesis factors. These results provide insights that contribute to developing new treatments for sarcopenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12233260PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0326968PLOS

Publication Analysis

Top Keywords

vitro model
8
human myotube
8
molecular mechanisms
8
studying sarcopenia
8
myotube diameter
8
sarcopenia
5
model study
4
molecular
4
study molecular
4
molecular pathogenesis
4

Similar Publications

An Antibacterial and Electroactive Chitosan-Based Dressing with Dual Stimulus-Responsive Drug Delivery for Wound Healing.

Macromol Rapid Commun

September 2025

Key Laboratory of Textile Science & Technology, College of Textiles, Ministry of Education, Donghua University, Shanghai, China.

Persistent bacterial infections remain a major challenge in wound management. Although drug-loaded wound dressings have gained increasing attention, their therapeutic efficacy is often hindered by uncontrolled drug release and a lack of electrical signal responsiveness. Herein, an antibacterial dressing (CCS-PC) with electroactivity and stimulus-responsive drug release properties was fabricated via electro-assembly, wherein chitosan and ciprofloxacin hydrochloride (CIP) were co-deposited onto polypyrrole (PPy)-coated gauze.

View Article and Find Full Text PDF

Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .

View Article and Find Full Text PDF

Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.

View Article and Find Full Text PDF

Carboxy-terminal tails (CTTs) of tubulin proteins are sites of regulating microtubule function. We previously conducted a genetic interaction screen and identified Kip3, a kinesin-8 motor, as potentially requiring the β-tubulin CTT (β-CTT) for function. Here we use budding yeast to define how β-CTT promotes Kip3 function and the features of β-CTT that are important for this mechanism.

View Article and Find Full Text PDF

Purpose: This study aimed to compare the dimensional and positional deviations of additively manufactured removable dies fabricated using two bio-based resins and one conventional dental cast resin, while also evaluating these outcomes over a 4-week period.

Materials And Methods: A right mandibular first molar preparation on a typodont was scanned to digitally design removable dies and hollow partial arch casts. Based on a priori power analysis, a total of 30 dies (n = 10) and three hollow casts (n = 1) were fabricated using additive manufacturing (AM) from three different dental cast resins: DentaMODEL (DM), FotoDent bio-based model (CB), and soy-based resin (SB).

View Article and Find Full Text PDF