98%
921
2 minutes
20
Though circadian locomotor rhythms are primarily driven by the suprachiasmatic nucleus, voluntary motor behavior also requires dopaminergic neuron (DAN) activity. However, it is unknown whether DAN molecular and electrophysiological properties and rhythmic motor behaviors are dependent on a molecular clock. Here, we show substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) DANs rhythmically express clock genes, and conditional deletion of in DANs reduces motivated locomotion without robust cell loss or gross motor impairment. Further, DAN conditional deletion disrupts 24-h rhythms in spike rate, revealing ultradian rhythms (~4-8 h). Lastly, SNc DAN bursting varies across time of day and increased early night bursting is dependent on the molecular clock and L-type calcium channel activation. Collectively, we provide evidence of a cell-intrinsic dopaminergic clock which regulates key behaviors and physiology. Future studies should consider the contribution of disrupted DAN molecular clocks in age-related motor diseases like Parkinson's Disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226335 | PMC |
http://dx.doi.org/10.1038/s44323-025-00044-2 | DOI Listing |
Mol Biol Evol
September 2025
Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
Recent theoretical and algorithmic advances in introgression detection, coupled with the growing availability of genome-scale data, have highlighted the widespread occurrence of interspecific gene flow across the tree of life. However, current methods largely depend on the molecular clock assumption-a questionable premise given empirical evidence of substitution rate variation across lineages. While such rate heterogeneity is known to compromise gene flow detection among divergent lineages, its impact on closely related taxa at shallow evolutionary timescales remains poorly understood, likely because these taxa are often assumed to adhere to a molecular clock.
View Article and Find Full Text PDFZygote
September 2025
International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
Circadian rhythms are intrinsic, endogenously generated cycles that regulate various physiological processes, including reproductive functions. These rhythms are orchestrated by a network of core clock genes and are influenced by external environmental cues, primarily the light-dark cycle. Disruptions in circadian rhythms can have profound effects on fertility in both males and females, impacting processes such as the estrous cycle, ovulation, sperm production, implantation and pregnancy maintenance.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFProc Biol Sci
September 2025
Oxford University Museum of Natural History, University of Oxford, Parks Road, Oxford OX1 3PW, UK.
Hemiptera, the fifth most diverse insect order, are characterized by their high diversity in deep time, with 145 known extinct families. However, the precise timing of the origin of Hemiptera lineages has remained uncertain. Traditional approaches, molecular clock analyses and fossil calibrations, have overlooked much of this extinct diversity by failing to incorporate key fossil data.
View Article and Find Full Text PDFMol Biol Rep
September 2025
ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India.
Background: Labeo fimbriatus (Bloch, 1795) is a medium-sized South Asian minor carp with ecological significance and emerging aquaculture potential, particularly in polyculture systems with Indian major carps. Despite its wide distribution, it remains underrepresented in phylogenetic studies, and limited genomic resources are available. Here, we report the complete mitochondrial genome sequence of L.
View Article and Find Full Text PDF