A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Efficient genome engineering in Agrobacterium tumefaciens C58 using recombineering assisted by CRISPR/Cas9. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recombineering, a technique derived from phage-encoded homologous recombination, has emerged as a vital approach for bacterial genome engineering. Agrobacterium tumefaciens is extensively utilized to transfer DNA into the host plant genomes. To facilitate the transformation of various plant species, particularly those of considerable economic value, genetic modifications of Agrobacterium strains are essential. Our previous studies established an Agrobacterium-specific phage-encoded homologous recombination system for Agrobacterium species. Yet, recent investigations have indicated that there is a substantial variability in the recombination efficiency of these recombineering systems for gene editing across different genome loci in A. tumefaciens. In this work, we present the development of an efficient genome engineering tool for A. tumefaciens by integrating recombineering with CRISPR/Cas9 technology. Initially, we found that lengthening the homology arms significantly enhanced genome editing efficiency. Nevertheless, at certain genomic sites, even when the length of the homology arms was increased, the editing efficiency remained suboptimal. Subsequently, combination of the Agrobacterium-specific recombineering system with the CRISPR/Cas9 system markedly enhanced the genome engineering efficiency. This study offers an enhanced and efficient genome engineering tool for A. tumefaciens, which could potentially be applied to other species within the Agrobacterium genus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2025.07.005DOI Listing

Publication Analysis

Top Keywords

genome engineering
20
efficient genome
12
engineering agrobacterium
8
agrobacterium tumefaciens
8
phage-encoded homologous
8
homologous recombination
8
engineering tool
8
tool tumefaciens
8
homology arms
8
enhanced genome
8

Similar Publications