Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Extensive research has focused on the vasculature, aiming to understand its structural characteristics, functions, interactions with surrounding tissues, and the mechanisms underlying vascular-related pathologies. However, advancing our understanding of vascular biology requires more complex and physiologically relevant models that integrate physical, chemical, and biological factors. Traditional dish models cannot replicate three-dimensional (3D) architecture, multi-cell-type interactions, and extracellular environments. animal models, while more complex, present ethical concerns, high costs, and limited relevance to human physiology. As a result, increasing attention is being directed toward models, specifically vascular microphysiological systems (MPS) based on organ-on-a-chip (OoC) technologies. This review highlights the relevance and potency of vascular MPS, which leverage microfluidic channels and 3D structures to mimic the physiological environment, incorporate diverse cellular and acellular components, and support complex biological processes. Vascular MPS are already enabling deep investigation into vascular responses to physiological cues, interactions with healthy and pathological tissues, and applications in disease modeling and drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5lc00014a | DOI Listing |