A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nitinol in Orthopedic Applications: Clinical Insights, Performance Challenges, and Future Directions. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The increasing prevalence of spinal disorders has spurred continuous innovation in implant design and biomaterials. Among emerging options, Nitinol has gained significant interest due to its unique combination of shape memory effect, superelasticity, and mechanical compatibility with bone tissue. These characteristics make it a promising candidate for spinal implants that support minimally invasive surgery and motion preservation. This review offers a comprehensive overview of Nitinol's clinical applications in orthopedics, with a particular focus on spinal procedures. It explores key material properties, device types, and performance benefits, including reduced stress shielding and improved implant-tissue integration. A wide range of Nitinol-based devices such as screws, plates and rods, nails, artificial discs, staples, and dynamic systems are discussed alongside clinical outcomes and case studies. Emerging directions such as additive manufacturing for patient-specific implants, and smart Nitinol systems with integrated sensing or actuation capabilities are discussed. In addition, challenges in thermal control, manufacturing reproducibility, and evolving regulatory standards are addressed. By synthesizing current advancements and unmet needs, this review highlights the clinical potential of Nitinol implants and outlines future directions for their safe, effective, and scalable integration into orthopedic practice.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.35615DOI Listing

Publication Analysis

Top Keywords

future directions
8
nitinol
4
nitinol orthopedic
4
orthopedic applications
4
clinical
4
applications clinical
4
clinical insights
4
insights performance
4
performance challenges
4
challenges future
4

Similar Publications