A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Dynorphin B induces mitochondrial fragmentation in NSCLC through the PKD/DRP-1 signaling pathway. | LitMetric

Dynorphin B induces mitochondrial fragmentation in NSCLC through the PKD/DRP-1 signaling pathway.

Neuropeptides

Department of Cardiohoracic, Zigui People's Hospital, Yichang, Hubei 443699, China. Electronic address:

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mitochondrial fragmentation and impairment are essential targets for therapeutic approach for non-small cell lung cancer (NSCLC), given their significant contributions to the persistence and progression of malignant cells. Dynorphin B (Dyn B), an endogenous opioid peptide, has been demonstrated for its involvement in an extensive array of cellular activities; however, its specific functions and mechanisms within the context of cancer remain largely undefined. To address this, we employed NCI-H2087 NSCLC cells treated with Dyn B (0.01-100 μM) and utilized lactate dehydrogenase (LDH) release and γ-glutamyl transpeptidase (GPT) activity assays to evaluate cytotoxicity. Mitochondrial function was assessed via Complex I activity assays, adenosine triphosphate (ATP) production measurements, and MitoSOX Green staining for reactive oxygen species (ROS). MitoTracker Red staining with ImageJ quantification characterized mitochondrial morphology, while Western blot analysis probed phosphorylation of dynamin-related protein 1 (DRP1) and protein kinase D (PKD). Lentiviral shRNA-mediated PKD silencing was used to validate functional rescue of mitochondrial dynamics. This investigation reveals that Dyn B induces cytotoxic effects in NCI-H2087 NSCLC cells by facilitating mitochondrial dysfunction and fragmentation. Treatment with Dyn B resulted in a significant augmentation of LDH and elevated GPT activity, indicating cellular injury. Additionally, Dyn B compromised mitochondrial functionality by reducing Complex I activity, diminishing ATP synthesis, and promoting mitochondrial ROS generation. Mechanistically, Dyn B triggered mitochondrial fragmentation through activation of DRP1 and PKD, without affecting protein kinase C (PKC). Silencing of PKD reversed Dyn B-induced mitochondrial fragmentation and restored mitochondrial functionality. These findings underscore the promising role of Dyn B as a prospective therapeutic agent in NSCLC, targeting mitochondrial dynamics via the PKD-DRP1 signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.npep.2025.102535DOI Listing

Publication Analysis

Top Keywords

mitochondrial fragmentation
16
mitochondrial
12
signaling pathway
8
dyn
8
nci-h2087 nsclc
8
nsclc cells
8
gpt activity
8
activity assays
8
complex activity
8
protein kinase
8

Similar Publications