Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study presents a novel approach for real-time gas identification at room temperature. We use UV-modulated Sb-doped SnO sensors combined with machine learning. Our method exclusively employs the gas response () as the sole metric. This eliminates the need for time-dependent parameters such as response and recovery times. By modulating the UV light intensity at five distinct levels (5, 10, 15, 20, and 30 mW/cm), we generate a five-dimensional optical fingerprint. This fingerprint captures subtle variations in sensor response under different illumination conditions. Gas discrimination was evaluated for both oxidizing gases (O and NO) and reducing gases (NH and H). Our machine learning results show that Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) achieve nearly 100% accuracy when four UV intensity levels are used. Using as the sole input metric allows for instantaneous response detection, which is essential for real-time gas identification. This approach addresses the limitations of conventional thermally activated sensors that require multiple parameters and paves the way for the development of rapid-response monitoring systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.5c01183DOI Listing

Publication Analysis

Top Keywords

real-time gas
12
gas identification
12
machine learning
12
identification room
8
room temperature
8
temperature uv-modulated
8
uv-modulated sb-doped
8
sb-doped sno
8
sno sensors
8
machine
4

Similar Publications

Investigating the mechanism of gastrodin-regulated miR-128-3p in methamphetamine dependence via integrated pharmacology.

Medicine (Baltimore)

September 2025

Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.

Gastrodin (GAS), the principal bioactive component derived from Gastrodia elata Bl., has demonstrated efficacy in attenuating methamphetamine (MA) induced conditioned place preference (CPP) in animal models. However, the molecular mechanisms underlying its anti-addictive effects, particularly the role of miRNAs, remain insufficiently understood.

View Article and Find Full Text PDF

Data-Driven Flow Control for Natural Gas Pipeline Networks: Optimizing via Anomaly Detection and Residual Weight Coefficients.

ACS Omega

September 2025

Shandong Provincial Key Laboratory of Oil, Gas and New Energy Storage and Transportation Safety, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China.

The natural gas pipeline network has a complex topology with variable flow directions, and the supply demand relationships between nodes exhibit cyclical, fluctuating, and time-varying trends. Developing efficient, accurate, and fast intelligent control algorithms is crucial for optimizing the distribution of natural gas networks. Analyzing the operational data from a provincial network over three years revealed that abnormal flow data, such as supply interruptions due to incidents, early fulfillment of supply, and insufficient flow distribution, can cause deviations between the actual transmission volume and the planned transmission volume predicted by the uneven coefficient method.

View Article and Find Full Text PDF

Objectives: Acute lung injury (ALI) is an acute respiratory failure syndrome characterized by impaired gas exchange. Due to the lack of effective targeted drugs, it is associated with high mortality and poor prognosis. (TW) has demonstrated anti-inflammatory activity in the treatment of various diseases.

View Article and Find Full Text PDF

Selective and rapid detection of ammonia (NH) gas over a wide concentration range is essential for applications such as early diagnosis of renal diseases and environmental safety. NH in exhaled breath serves as a biomarker of kidney function, and its precise detection is vital for early renal disease diagnosis. This work reports a SnS/PANI heterojunction nanocomposite (SPA) sensor synthesized a hydrothermal route followed by oxidative polymerization.

View Article and Find Full Text PDF

On-site accurate and real-time monitoring of trace chemical warfare agents is a critical component of national security surveillance. In this study, a photoionization-induced chemical ionization time-of-flight mass spectrometry is developed for the detection of trace gaseous chemical warfare agents under ambient conditions. Firstly, a benzene-toluene-xylene mixture standard gas is utilized to optimize the instrument parameters, followed by screening of dopants for chemical warfare agents detection, with methanol ultimately identified as the optimal dopant.

View Article and Find Full Text PDF