A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

G-Protein-Coupled Receptor-Microtubule Interactions Regulate Neurite Development and Protect Against β-Amyloid Neurotoxicity. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

G-protein-coupled receptors (GPCRs) regulate multiple cellular functions, including neurite formation and maturation, processes often disrupted in neurodegenerative diseases. Like GPCRs, microtubule-associated proteins (MAPs, including MAP2 and Tuj1) and the synaptic vesicle protein synaptophysin are essential for neurite formation, maturation, and organization, which underpin brain development and cognitive function. Despite their importance, the functional crosstalk between GPCRs and MAPs, particularly in neurogenesis and pathological conditions such as Alzheimer's disease (AD), remains poorly understood. We show that somatostatin and dopamine receptors (SSTR and DR) are the structural anchors in developing neurites, enabling MAP recruitment and synaptic protein localization. Our findings reveal a cAMP-dependent interplay involving PTEN and ERK1/2, modulating neurite formation and MAPs organization. Notably, we show that β-amyloid (Aβ) disrupts the constitutive association of MAP2 and Tuj1, inducing an increase in intracellular cAMP levels, loss of neurite integrity, and impaired neuronal viability. The activation of SSTR and DR signaling restores neurite architecture and synaptic integrity via p-AKT activation and PTEN inhibition, highlighting a neuroprotective mechanism. Together, our results reveal a novel role of GPCRs in orchestrating interactions with MAPs to regulate neuronal maturation, neurite formation, and synaptic integrity. This study provides a new mechanistic rationale for therapeutic strategies aimed at preserving cognitive function in neurological disorders such as AD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-025-05179-8DOI Listing

Publication Analysis

Top Keywords

neurite formation
16
formation maturation
8
map2 tuj1
8
cognitive function
8
synaptic integrity
8
neurite
7
g-protein-coupled receptor-microtubule
4
receptor-microtubule interactions
4
interactions regulate
4
regulate neurite
4

Similar Publications