Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Computational modelling of disease spread is crucial for understanding the dynamics of infectious outbreaks and assessing the effectiveness of control measures. In particular, network-based models for disease spreading offer detailed, granular insights into heterogeneous interactions and enable dynamic simulation of intervention strategies. Therefore, they offer valuable insights into the factors influencing disease spread, enabling public health authorities to develop effective containment strategies. Vaccination is among the most impactful interventions in controlling disease spread and has proven essential in preventing the spread of infectious diseases such as measles. However, recent trends indicate a concerning decline in the fraction of vaccinated individuals in various populations, increasing the risk of outbreaks.

Methods: In this study, we utilize computational simulations on graph-based models to analyze how vaccination affects the spread of infectious diseases. By representing populations as networks in which individuals (nodes) are connected by potential spread pathways (edges), we simulate different vaccination coverage scenarios and assess their impact on disease spread. Our simulations incorporate high and low vaccination coverage to reflect real-world trends and explore various conditions under which disease spread can be effectively blocked.

Results: The results demonstrate that adequate vaccination coverage is critical for halting outbreaks, with a marked reduction in disease spread observed as the fraction of vaccinated individuals increases. Conversely, insufficient vaccination rates lead to widespread outbreaks, underscoring the importance of maintaining high vaccination levels to achieve herd immunity and prevent resurgence. These findings highlight the vital role of vaccination as a preventative tool and emphasize the potential risks posed by declining vaccination rates.

Conclusion: This study provides a deeper understanding of how vaccination strategies can mitigate the spread of infectious diseases and serves as a reminder of the importance of maintaining robust immunization programs to protect public health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12219886PMC
http://dx.doi.org/10.1186/s12911-025-03063-yDOI Listing

Publication Analysis

Top Keywords

disease spread
24
infectious diseases
16
spread infectious
12
vaccination coverage
12
spread
10
vaccination
10
public health
8
fraction vaccinated
8
vaccinated individuals
8
disease
7

Similar Publications

IBDV-SSA, a novel molecular approach for the recovery of infectious bursal disease virus whole genomes from FTA cards.

Microbiol Spectr

September 2025

United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Southeast Poultry Research Laboratories, US National Poultry Research Center, Athens, Georgia, USA.

Infectious bursal disease (IBD), a highly contagious viral disease in young chickens, poses significant economic losses due to high mortality and immunosuppression. While IBD virus (IBDV) virulence is influenced by multiple genes, whole-genome sequencing (WGS) of IBDV is crucial for defining the strain pathotype and clinical profile. Flinders Technology Associates (FTA) cards are convenient for field sample collection, but their filter paper matrix can hinder nucleic acid recovery, impacting sequencing efficiency.

View Article and Find Full Text PDF

Crusted scabies (also referred to as Norwegian scabies) is an uncommon and highly contagious variant of scabies. Although crusted scabies is often prevalent in the elderly and immunocompromised individuals, it can occur in the immunocompetent pediatric population. Early and accurate diagnosis, and appropriate treatments must be provided to pediatric patients who present with symptoms of crusted scabies to prevent complications and spread the disease in communities.

View Article and Find Full Text PDF

Introduction: Tinea pedis is a common disease that affects up to 70% of adults during a lifetime. Most cases are caused by Trichophyton species. Worldwide, terbinafine resistance among dermatophytes is rising, which is concerning as terbinafine is the first-line treatment.

View Article and Find Full Text PDF

Evaluating Tuskegee University's Ongoing Response Strategy to Mitigate Direct and Indirect Impacts of the COVID-19 Pandemic by Using an Integrative Framework Analysis.

J Healthc Sci Humanit

January 2024

Program Manager, Center for Biomedical Research/Research Centers in Minority Institutions (TU CBR/RCMI), Department of Biology, College of Arts and Sciences (CAS), Tuskegee University, Phone: (334) 724-4391, Email:

The emergence of the Novel COVID-19 Pandemic has undoubtedly impacted the lives of individuals across the globe. It has drawn the attention of major public health agencies as they work intensely towards understanding the behavior of the virus causing the disease, while simultaneously establishing ways to curb the spread of the virus among populations. As of the time of writing, 7,949,973 confirmed cases have been reported globally; with the United States (US) contributing to 26.

View Article and Find Full Text PDF