Deep learning for automated segmentation of radiation-induced changes in cerebral arteriovenous malformations following radiosurgery.

BMC Med Imaging

In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist, Taipei City, 110, Taiwan.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Despite the widespread use of stereotactic radiosurgery (SRS) to treat cerebral arteriovenous malformations (AVMs), this procedure can lead to radiation-induced changes (RICs) in the surrounding brain tissue. Volumetric assessment of RICs is crucial for therapy planning and monitoring. RICs that appear as hyper-dense areas in magnetic resonance T2-weighted (T2w) images are clearly identifiable; however, physicians lack tools for the segmentation and quantification of these areas. This paper presents an algorithm to calculate the volume of RICs in patients with AVMs following SRS. The algorithm could be used to predict the course of RICs and facilitate clinical management.

Methods: We trained a Mask Region-based Convolutional Neural Network (Mask R-CNN) as an alternative to manual pre-processing in designating regions of interest. We also applied transfer learning to the DeepMedic deep learning model to facilitate the automatic segmentation and quantification of AVM edema regions in T2w images.

Results: The resulting quantitative findings were used to explore the effects of SRS treatment among 28 patients with unruptured AVMs based on 139 regularly tracked T2w scans. The actual range of RICs in the T2w images was labeled manually by a clinical radiologist to serve as the gold standard in supervised learning. The trained model was tasked with segmenting the test set for comparison with the manual segmentation results. The average Dice similarity coefficient in these comparisons was 71.8%.

Conclusions: The proposed segmentation algorithm achieved results on par with conventional manual calculations in determining the volume of RICs, which were shown to peak at the end of the first year after SRS and then gradually decrease. These findings have the potential to enhance clinical decision-making.

Trial Registration: Not applicable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12210579PMC
http://dx.doi.org/10.1186/s12880-025-01796-wDOI Listing

Publication Analysis

Top Keywords

deep learning
8
radiation-induced changes
8
cerebral arteriovenous
8
arteriovenous malformations
8
t2w images
8
segmentation quantification
8
volume rics
8
rics
7
segmentation
5
learning automated
4

Similar Publications

Neuroimaging Data Informed Mood and Psychosis Diagnosis Using an Ensemble Deep Multimodal Framework.

Hum Brain Mapp

September 2025

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.

Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.

View Article and Find Full Text PDF

A robust deep learning-driven framework for detecting Parkinson's disease using EEG.

Comput Methods Biomech Biomed Engin

September 2025

Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India.

Parkinson's disease (PD) is a neurodegenerative condition that impairs motor functions. Accurate and early diagnosis is essential for enhancing well-being and ensuring effective treatment. This study proposes a deep learning-based approach for PD detection using EEG signals.

View Article and Find Full Text PDF

Introduction: Pulmonary embolism (PE) is a life-threatening condition with well-defined management strategies; however, the presence of a clot-in-transit (CIT)-a mobile thrombus within the right heart-introduces a uniquely high-risk scenario associated with a significantly elevated mortality rate. While several therapeutic approaches are available-including anticoagulation, systemic thrombolysis, surgical embolectomy, and catheter-directed therapies-there is no established consensus on a superior treatment modality. Catheter-based mechanical thrombectomy has emerged as a promising, minimally invasive alternative that mitigates the bleeding risks of systemic thrombolysis and the invasiveness of surgery.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.

Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.

View Article and Find Full Text PDF