98%
921
2 minutes
20
Background: To develop and validate a diagnostic framework integrating intralesional (ILN) and perilesional (PLN) radiomics derived from multiparametric MRI (mpMRI) for distinguishing IgG4-related ophthalmic disease (IgG4-ROD) from orbital mucosa-associated lymphoid tissue (MALT) lymphoma.
Methods: This multicenter retrospective study analyzed 214 histopathologically confirmed cases (68 IgG4-ROD, 146 MALT lymphoma) from two institutions (2019-2024). A LASSO-SVM classifier was optimized through comparative evaluation of seven machine learning models, incorporating fused radiomic features (1,197 features) from ILN/PLN regions. Diagnostic performance was benchmarked against two subspecialty radiologists (10-20 years' experience) using receiver operating characteristics - area under the curve (AUC), precision-recall AUC (PR-AUC), and decision curve analysis (DCA), adhering to CLEAR/METRICS guidelines.
Results: The fusion model (FR_RAD) achieved state-of-the-art performance, with an AUC of 0.927 (95% CI 0.902-0.958) and a PR-AUC of 0.901 (95% CI 0.862-0.940) in the training set, and an AUC of 0.907 (95% CI 0.857-0.965) and a PR-AUC of 0.872 (95% CI 0.820-0.924) on external testing. In contrast, subspecialty radiologists achieved lower AUCs of 0.671-0.740 (95% CI 0.630-0.780) and PR-AUCs of 0.553-0.632 (95% CI 0.521-0.664) (all p < 0.001). FR_RAD also outperformed radiologists in accuracy (88.6% vs. 66.2% and 71.3%; p < 0.01). DCA demonstrated a net benefit of 0.18 at a high-risk threshold of 30%, equivalent to avoiding 18 unnecessary biopsies per 100 cases.
Conclusions: The fusion model integrating multi-regional radiomics from mpMRI achieves precise differentiation between IgG4-ROD and orbital MALT lymphoma, outperforming subspecialty radiologists. This approach highlights the transformative potential of spatial radiomics analysis in resolving diagnostic uncertainties and reducing reliance on invasive procedures for orbital lesion characterization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220517 | PMC |
http://dx.doi.org/10.1186/s12880-025-01771-5 | DOI Listing |
MAGMA
September 2025
Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3585CX, Utrecht, The Netherlands.
Objective: Within gradient-spoiled transient-state MR sequences like Magnetic Resonance Fingerprinting or Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT), it is examined whether an optimized RF phase modulation can help to improve the precision of the resulting relaxometry maps.
Methods: Using a Cramer-Rao based method called BLAKJac, optimized sequences of RF pulses have been generated for two scenarios (amplitude-only modulation and amplitude + phase modulation) and for several conditions. These sequences have been tested on a phantom, a healthy human brain and a healthy human leg, to reconstruct parametric maps ( and ) as well as their standard deviations.
MAGMA
September 2025
Department of Medical Imaging, (766), Radboud University Medical Center, Geert Grooteplein 10Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands.
Objective: To improve B field homogeneity in prostate MR imaging and spectroscopy using a custom-designed 16-channel external local shim coil array.
Methods: In vivo prostate imaging was performed in seven healthy volunteers (mean age: 40.7 years) without bowel preparation.
JAMA
September 2025
Division of Surgery and Interventional Science, UCL, London, United Kingdom.
Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.
View Article and Find Full Text PDFRadiol Artif Intell
September 2025
Department of Radiology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, No. 197 Ruijin Er Road, Shanghai 200025, China.
Purpose To assess the effectiveness of an explainable deep learning (DL) model, developed using multiparametric MRI (mpMRI) features, in improving diagnostic accuracy and efficiency of radiologists for classification of focal liver lesions (FLLs). Materials and Methods FLLs ≥ 1 cm in diameter at mpMRI were included in the study. nn-Unet and Liver Imaging Feature Transformer (LIFT) models were developed using retrospective data from one hospital (January 2018-August 2023).
View Article and Find Full Text PDFJ Neurooncol
September 2025
Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
Rationale And Objectives: Double expression lymphoma (DEL) is an independent high-risk prognostic factor for primary CNS lymphoma (PCNSL), and its diagnosis currently relies on invasive methods. This study first integrates radiomics and habitat radiomics features to enhance preoperative DEL status prediction models via intratumoral heterogeneity analysis.
Materials And Methods: Clinical, pathological, and MRI imaging data of 139 PCNSL patients from two independent centers were collected.