A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multi-omics profiling of Nanhaia speciosa and Nanhaia fordii: insights into lectin dynamics, nodulation, and triterpenoid saponin biosynthesis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Nanhaia speciosa (N. speciosa) has long been served as a traditional medicinal and edible plant. N. speciosa and Nanhaia fordii (N. fordii) are the only two species under the Nanhaia genus, but the latter is of limited use. As a closely related species, N. fordii has a highly similar appearance and taste to N. speciosa and was used in the market to impersonate N. speciosa with potential harm to health.

Results: To analyze the differences and underlying basis between N. speciosa and N. fordii, we conducted a comprehensive comparison of their genomic, transcriptomic, and metabolomic data. Using PacBio HiFi and Hi-C data, we achieved high-quality haploid genomes for both N. speciosa and N. fordii. Comparative analysis reveals the elevated expression of Wisteria lectin-like genes in N. fordii, corresponding with higher heat-resistance lectin content in N. fordii than in N. speciosa, potentially causing food poisoning due to increased lectin levels in the plant. Metabolomic analysis indicates that licorice saponins are the main components contributing to the sweetness in N. fordii and N. speciosa, making it the only reported plant, apart from the licorice genus, containing licorice saponins. Moreover, the nodulation key gene RPG cannot be expressed in the roots of N. speciosa, possibly explaining the ability of N. fordii to form nodules while N. speciosa cannot.

Conclusions: Leveraging high-quality haploid genome assembly and multi-omics analysis, our data provides a crucial foundation for identifying key metabolic components and candidate genes associated with important traits and for breeding new varieties of N. fordii and N. speciosa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12211168PMC
http://dx.doi.org/10.1186/s12915-025-02278-9DOI Listing

Publication Analysis

Top Keywords

speciosa
13
fordii speciosa
12
fordii
11
nanhaia speciosa
8
speciosa nanhaia
8
nanhaia fordii
8
speciosa fordii
8
high-quality haploid
8
licorice saponins
8
nanhaia
5

Similar Publications