98%
921
2 minutes
20
Recent advancements in nanotechnology have positioned plasmonic optical sensors as powerful tools for biosensing applications. These sensors utilize the interaction of electromagnetic waves with metallic nanostructures to enable rapid, label-free detection of biological analytes. In this study, we propose and optimize a plasmonic optical biosensor based on nanohole arrays and metal-insulator-semiconductor-metal (MISM) nanorings for detecting various viruses. The sensor structure incorporates gold and silver layers on a silver substrate, with the nanohole and nanoring elements engineered to enhance sensitivity to refractive index variations in the surrounding medium. The finite-difference time-domain (FDTD) method evaluates the sensor's performance, which numerically solves Maxwell's equations for frequency-dependent optical behavior. Simulation results demonstrate the sensor's capability to detect minute refractive index changes induced by viruses such as HSV, HIV-1, Influenza A, and M13 bacteriophage. The design achieves a high sensitivity of 811 nm/RIU, attributed to Fano resonance effects and optimized geometrical parameters. Furthermore, the sensor exhibits a figure of merit (FOM) of 3.38 RIU⁻¹ and a limit of detection (LoD) of 0.268 RIU, outperforming many previously reported plasmonic biosensors. These findings underscore the potential of nanohole-MISM nanoring-based plasmonic sensors for rapid, label-free, and highly sensitive virus detection. With further development in structural design and fabrication techniques, this platform could be widely applicable in medical diagnostics and point-of-care biosensing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12217624 | PMC |
http://dx.doi.org/10.1038/s41598-025-07501-9 | DOI Listing |
Appl Radiat Isot
September 2025
Nuclear Engineering Department, School of Mechanical Engineering, Shiraz University, Shiraz, Iran.
Accurate determination of the parameters of each high purity germanium, HPGe detectors ensure the precision of quantitative results obtained from spectrum analysis. This study presents a comprehensive performance evaluation and long-term quality control assessment of a high-purity germanium (HPGe) gamma spectrometry system that has been operational for over 15 years. Key spectrometric measures were recorded, including energy resolution, peak shape ratios, asymmetry, peak-to-Compton ratio, relative efficiency, electronic noise, minimum detectable activity (MDA), and repeatability and reproducibility of the system.
View Article and Find Full Text PDFACS Sens
September 2025
College of Chemistry, Beijing Normal University, Beijing 100875, China.
Dopamine (DA) signaling is essential for neurodevelopment and is particularly sensitive to disruption during adolescence. Protein restriction (PR) can impair DA dynamics, yet mechanistic insights remain limited due to challenges in real-time neurochemical sensing. Here, we present aptCFE, a robust implantable aptamer-based sensor fabricated via a reagent-free, 3 min electrochemical conjugation (E-conjugation) using amine-quinone chemistry.
View Article and Find Full Text PDFBiomol Biomed
September 2025
Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
Coronary heart disease (CHD) is a leading cause of morbidity and mortality; patients with type 2 diabetes mellitus (T2DM) are at particularly high risk, highlighting the need for reliable biomarkers for early detection and risk stratification. We investigated whether combining the stress hyperglycemia ratio (SHR) and systemic inflammation response index (SIRI) improves CHD detection in T2DM. In this retrospective cohort of 943 T2DM patients undergoing coronary angiography, associations of SHR and SIRI with CHD were evaluated using multivariable logistic regression and restricted cubic splines; robustness was examined with subgroup and sensitivity analyses.
View Article and Find Full Text PDFJ Org Chem
September 2025
Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego St. 8, 61-614 Poznań, Poland; https://www.kucinskilab.com.
The development of efficient and broadly applicable silylation methodologies remains a central goal in synthetic organic and organosilicon chemistry. Traditionally, silylation reactions employ chlorosilanes or hydrosilanes, often necessitating the use of moisture-sensitive and corrosive reagents. Herein, we report a high-yielding, operationally simple, rapid, and economical silylation platform based on trifluoromethyltrimethylsilane (TMSCF) and catalytic potassium hydroxide (KOH).
View Article and Find Full Text PDFJMIR Res Protoc
September 2025
Department of Urology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.
View Article and Find Full Text PDF