Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Targeted mutagenesis systems are critical for protein evolution. Current deaminase-T7 RNA polymerase fusion systems enable gene-specific mutagenesis but remain limited to certain model organisms. Here, we develop an orthogonal transcription mutation system for in vivo hypermutation in both non-model organism Halomonas bluephagenesis and E. coli, achieving >1,500,000-fold increased mutation rates. By fusing deaminases with three phage RNA polymerases, this system uniformly introduces C:G to T:A and A:T to G:C mutations across target genes. The system demonstrates high specificity, minimal off-target effects, and high orthogonality between phage polymerases. We apply this system to rapidly evolve fluorescent proteins, chromoproteins, cytoskeletal proteins, cell division-related proteins, global sigma factor, and the LysE exporter within a single day of the mutagenesis process. Overall, the orthogonal transcription mutation system is a modular and versatile platform that accelerates protein evolution in the shortest period reported so far.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12218169PMC
http://dx.doi.org/10.1038/s41467-025-61354-4DOI Listing

Publication Analysis

Top Keywords

orthogonal transcription
12
transcription mutation
12
mutation system
12
protein evolution
12
system
6
mutation
4
system generating
4
generating transition
4
transition mutations
4
mutations accelerated
4

Similar Publications

Using BONCAT to dissect the proteome of persisters.

mSphere

September 2025

Leiden Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Leiden, the Netherlands.

Bacterial persisters are a subpopulation of cells that exhibit a transient non-susceptible phenotype in the presence of bactericidal antibiotic concentrations. This phenotype can lead to the survival and regrowth of bacteria after treatment, resulting in relapse of infections. It is also a contributing factor to antibacterial resistance.

View Article and Find Full Text PDF

Establishing immune tolerance to gut microbiota and food antigens upon first exposures during early life is essential to prevent inflammatory bowel diseases and food allergy and depends on induction of peripherally induced Rorgt expressing regulatory T (Rorgt+ pTreg) cells. Recent studies have identified a critical role for Rorgt expressing antigen-presenting cells (APC), Thetis cells (TCs), in peripheral regulatory T (pTreg) cell differentiation and tolerance to food and commensal microbes. TCs encompass four distinct subsets, and a subset of TCs, TC IV induces pTreg differentiation, but the transcription factors that control their differentiation are not fully known.

View Article and Find Full Text PDF

An exciting feature of nanopore sequencing is its ability to record multi-omic information on the same sequenced DNA molecule. Well-trained models allow the detection of nucleotide-specific molecular signatures through changes in ionic current as DNA molecules translocate through the nanopore. Thus, naturally occurring DNA modifications, such as DNA methylation and hydroxymethylation, may be recorded simultaneously with the genetic sequence.

View Article and Find Full Text PDF

IL-4-mediated Pro-Regenerative Cellular Reprogramming in 3D Liver Culture.

Cell Mol Gastroenterol Hepatol

September 2025

Ajmera Transplant Centre, University Health Network, Toronto, ON; Department of Immunology, University of Toronto, Toronto, ON; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON. Electronic address:

Background & Aims: Interleukin-4 (IL-4) is a key contributor to liver regeneration but its effects remain poorly understood due to a lack of models that preserve the complex cellular interactions of the liver. Here, we use murine precision-cut liver slices (PCLS), a 3D tissue culture system that maintains both parenchymal and non-parenchymal cells, to investigate the role of IL-4 in hepatic cell reprogramming. Through longitudinal single-cell transcriptomics and protein-level validation, we demonstrate the pro-regenerative potential of IL-4.

View Article and Find Full Text PDF

Background: Localized high-risk prostate cancer (PCa) often recurs despite neoadjuvant androgen deprivation therapy (ADT). We sought to identify baseline molecular programs that predict pathologic response and reveal targetable vulnerabilities.

Methods: We profiled 147 biopsy foci from 48 MRI-visible lesions in 37 patients before 6 months of ADT plus enzalutamide and radical prostatectomy.

View Article and Find Full Text PDF