Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Modern sequencing instruments bring unprecedented opportunity to study within-host viral evolution in conjunction with viral transmissions between hosts. However, no computational simulators are available to assist the characterization of within-host dynamics. This limits our ability to interpret epidemiological predictions incorporating within-host evolution and to validate computational inference tools. To fill this need we developed Apollo, a GPU-accelerated, out-of-core tool for within-host simulation of viral evolution and infection dynamics across population, tissue, and cellular levels. Apollo is scalable to hundreds of millions of viral genomes and can handle complex demographic and population genetic models. Apollo can replicate real within-host viral evolution; accurately recapturing observed viral sequences from HIV and SARS-CoV-2 cohorts derived from initial population-genetic configurations. For practical applications, using Apollo-simulated viral genomes and transmission networks, we validated and uncovered the limitations of a widely used viral transmission inference tool.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12219717 | PMC |
http://dx.doi.org/10.1038/s41467-025-60988-8 | DOI Listing |