Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Transfer printing techniques have enabled the fabrication of devices on soft or delicate substrates that are incompatible with conventional manufacturing processes. However, the involved sacrifice-layer removal process typically causes damage to the quality of device interfaces. Here, we develop a sacrifice-layer-free transfer printing strategy by pre-depositing the device constituents onto commercially available mica substrates. The intrinsic weak interfacial interaction enables the transfer of various pre-deposited device constituents at the wafer scale, including well-known strongly adhesive dielectrics grown by atomic layer deposition (ALD). Moreover, entire top-gated device stacks can be simultaneously transferred onto few-layer MoS to form fully gated two-dimensional (2D) transistors, showing an atomically sharp interface, negligible gate hysteresis (~5 mV) and subthreshold swings near the thermionic limit. Importantly, the conformal growth of ALD dielectrics enables the one-step fabrication of complex top-gated Hall devices with a fully encapsulated structure, allowing multi-terminal gate-tunable transport measurements on fragile 2D materials, such as black phosphorus. Our work not only enriches the transfer printing methodologies for difficult-to-transfer materials, but also provides a method to investigate the properties of fragile 2D materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12217795 | PMC |
http://dx.doi.org/10.1038/s41467-025-60864-5 | DOI Listing |