Hot Melt Extruded Aceclofenac-Soluplus® Solid Dispersion: Mechanistic View of Miscibility and Drug-Carrier Interactions for Enhanced Dissolution.

AAPS PharmSciTech

Center for Drug Delivery Technologies, Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aceclofenac (ACF), a Non-Steroidal Anti-Inflammatory Drug (NSAID), is formulated with Soluplus® (SOLP) to enhance solubility and bioavailability. This study presents a distinct approach by utilizing Hot Melt Extrusion (HME) to prepare Aceclofenac-Soluplus® solid dispersion (ACF-SOLP), in contrast to the previously investigated nanoemulsion technique. The HME technique facilitates a uniform drug distribution within the polymer matrix, increasing ACF's dissolution rate. Different weight ratios of ACF and SOLP were assessed with 1:8 (HM4), which proved to be the optimal choice. ACF is dispersed within SOLP in its amorphous state, and HM4 exhibited a significant increase in drug release as compared to pure ACF and its physical mixture. In vivo pharmacokinetic data of HM4 demonstrated a drastic improvement in the C (7.1 ± 0.14 µg/ml) and AUC (12.1 ± 1.30 µg-h/ml). Further, molecular dynamics simulation revealed that the polymer is widely dispersed within the supramolecular architecture of ACF-SOLP, with ACF positioned centrally, confirming the favorable interactions between the components. Leveraging the hydrophilic nature of the SOLP, the solid dispersion demonstrated enhanced dissolution of ACF, while HME synergistically reinforced the combination. This approach presents a compelling alternative to traditional methods, unlocking new possibilities for formulating poorly soluble drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12249-025-03173-wDOI Listing

Publication Analysis

Top Keywords

solid dispersion
12
hot melt
8
aceclofenac-soluplus® solid
8
enhanced dissolution
8
acf
6
melt extruded
4
extruded aceclofenac-soluplus®
4
dispersion mechanistic
4
mechanistic view
4
view miscibility
4

Similar Publications

Construction of Zeolite Framework-Anchored Rh-(O-Zn) Sites for Ethylene Hydroformylation.

J Am Chem Soc

September 2025

National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Zeolite-confined Rh-based catalysts have emerged as promising heterogeneous candidates for olefin hydroformylation. However, they face challenges of reactant- and product-induced Rh leaching and aggregation. Herein, zeolite framework-anchored Rh-(O-Zn) sites were designed and are shown to have remarkable activity and stability for gas-phase ethylene hydroformylation.

View Article and Find Full Text PDF

Far-Field Excitation of a Photonic Flat Band via a Tailored Anapole Mode.

Phys Rev Lett

August 2025

Xiamen University, College of Physical Science and Technology, School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Fujian Key Laboratory of Ultrafast Laser Technology and Applica

The photonic flat band, defined by minimal dispersion and near-zero group velocity, has facilitated significant advances in optical technologies. The practical applications of flat bands, such as enhanced light-matter interactions, require efficient coupling to far-field radiation. However, achieving controlled coupling between flat bands and their corresponding localized modes with far-field radiation remains challenging and elusive.

View Article and Find Full Text PDF

Objective: To prepare astragaloside IV dripping pills (ASDP) and assess their therapeutic effects on mice with doxorubicin hydrochloride-induced dilated cardiomyopathy (DCM).: Astragaloside IV (AS) exhibits pharmacological effects in treating cardiovascular diseases, however, its clinical application is hindered by poor solubility and low bioavailability. The study sheds light on new therapeutic strategy of DCM and development of AS formulations.

View Article and Find Full Text PDF

Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.

View Article and Find Full Text PDF

This study focuses on developing an analytical method to efficiently extract and concentrate several adipate and phthalate plasticizers that can migrate from plastic packaging into various wound disinfectants. The study employed an approach that combined dispersive micro solid phase extraction with dispersive liquid-liquid microextraction using ZIF-4 as an adsorbent. The adsorbent was thoroughly characterized to understand its properties.

View Article and Find Full Text PDF