Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multimodal recommendation systems integrate diverse multimodal information into the feature representations of both items and users, thereby enabling a more comprehensive modeling of user preferences. However, existing methods are hindered by data sparsity and the inherent noise within multimodal data, which impedes the accurate capture of users' interest preferences. Additionally, discrepancies in the semantic representations of items across different modalities can adversely impact the prediction accuracy of recommendation models. To address these challenges, we introduce a novel diffusion-based contrastive learning (DiffCL) framework for multimodal recommendation. DiffCL employs a diffusion model (DM) to generate contrastive views that effectively mitigate the impact of noise during the contrastive learning phase. Furthermore, it improves semantic consistency across modalities by aligning distinct visual and textual semantic information through stable ID embeddings. Finally, the introduction of the item-item graph (I-I graph) enhances multimodal feature representations, thereby alleviating the adverse effects of data sparsity on the overall system performance. We conduct extensive experiments on three public datasets, and the results demonstrate the superiority and effectiveness of the DiffCL.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2025.3583509DOI Listing

Publication Analysis

Top Keywords

contrastive learning
12
diffusion-based contrastive
8
multimodal recommendation
8
multimodal feature
8
feature representations
8
representations items
8
data sparsity
8
multimodal
6
diffcl
4
diffcl diffusion-based
4

Similar Publications

Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.

Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.

View Article and Find Full Text PDF

Neural Quantum Embedding via Deterministic Quantum Computation with One Qubit.

Phys Rev Lett

August 2025

Southern University of Science and Technology, Department of Physics, State Key Laboratory of Quantum Functional Materials, and Guangdong Basic Research Center of Excellence for Quantum Science, Shenzhen 518055, China.

Quantum computing is expected to provide an exponential speedup in machine learning. However, optimizing the data loading process, commonly referred to as "quantum data embedding," to maximize classification performance remains a critical challenge. In this Letter, we propose a neural quantum embedding (NQE) technique based on deterministic quantum computation with one qubit (DQC1).

View Article and Find Full Text PDF

Background: Underwater environments face challenges with image degradation due to light absorption and scattering, resulting in blurring, reduced contrast, and color distortion. This significantly impacts underwater exploration and environmental monitoring, necessitating advanced algorithms for effective enhancement.

Objectives: The study aims to develop an innovative underwater image enhancement algorithm that integrates physical models with deep learning to improve visual quality and surpass existing methods in performance metrics.

View Article and Find Full Text PDF

Objective: Frequent and objective assessment of ataxia severity is essential for tracking disease progression and evaluating the effectiveness of potential treatments. Wearable-based assessments have emerged as a promising solution. However, existing methods rely on inertial data features directly correlated with subjective and coarse clinician-evaluated rating scales, which serve as imperfect gold standards.

View Article and Find Full Text PDF

Objective: To identify the key features of facial and tongue images associated with anemia in female populations, establish anemia risk-screening models, and evaluate their performance.

Methods: A total of 533 female participants (anemic and healthy) were recruited from Shuguang Hospital. Facial and tongue images were collected using the TFDA-1 tongue and face diagnosis instrument.

View Article and Find Full Text PDF