Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The functional diversity of proteins often arises from the remodeling of conformational ensembles, particularly through mutations and post-translational modifications (PTMs). However, experimentally characterizing such ensembles remains challenging due to their heterogeneous and transient nature. Here, we report the determination of the conformational substates of β-sheets and the effect associated with mutations and PTMs in human islet amyloid polypeptide (hIAPP) via scanning tunneling microscopy (STM). Thanks to the ultrahigh resolution of STM, the β-sheets formed by the assembly of hIAPP were revealed to be conformationally diverse, including 17 types of conformational substates concomitant with 60 types of interconformation interactions. These conformational substates are highly heterogeneous in the folding structures but close in energy. Four mutations and PTMs were carried out with hIAPP to investigate the evolvability of the β-sheet assembly. Regulation effects accomplished by the mutations and PTMs on the conformational ensembles of β-sheets have been identified, including the number of conformational substates, the most probable substates, and the topography of the energetic landscapes of inter-β-strand interactions. Different types of variations show divergence in the influences on the β-sheet conformational ensembles, which is correlated with the divergent aggregation propensity. Our results highlight the plasticity of conformational ensembles upon mutations and PTMs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203261 | PMC |
http://dx.doi.org/10.1021/acscentsci.5c00421 | DOI Listing |