Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Passion fruit (Passiflora edulis) is a perennial, woody, tropical vine. It produces edible round to oval fruit that is highly favored for its unique aroma and taste, as well as its richness in antioxidants, vitamins, and minerals. However, functional genomics studies of passion fruit are scarce, as simple and efficient genetic tools are lacking for this species. Here, we developed virus-mediated protein overexpression (VOX) and virus-induced gene silencing (VIGS) vectors based on the telosma mosaic virus (TelMV), an emerging potyvirus that infects passion fruit plants worldwide. This vector, designated pTelMV-GW, incorporates Gateway-compatible recombination sites for rapid gene cloning. Using this vector, we achieved systemic stable expression of 2 heterologous proteins in passion fruit: green fluorescent protein (GFP) and bacterial phytoene synthase (CrtB). Additionally, pTelMV-GW containing different GFP fragments also induced systemic gene silencing in GFP-transgenic Nicotiana benthamiana plants. Furthermore, we used this vector to trigger phytoene desaturase (PDS) and magnesium chelatase subunit I (ChlI) silencing in passion fruit plants. The TelMV-based VIGS was enhanced using a mild TelMV strain encoding a mutated helper-component proteinase (HC-Pro) with impaired RNA silencing suppressor activity. This upgraded vector (pTelMV-R181K-GW), containing PDS or ChlI fragments, induced clear photobleaching or yellowing phenotypes in passion fruit plants. Overall, our work presents a set of VIGS and VOX vectors for use in passion fruit plants, a crucial step towards identifying horticulturally important genes for improving passion fruit production and quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/plphys/kiaf281 | DOI Listing |