A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Lactylation-Related Gene LILRB4 Predicts the Prognosis and Immunotherapy of Prostate Cancer Based on Machine Learning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lactylation plays a pivotal role in the metabolic reprogramming, proliferation, migration and immune evasion of tumour cells. However, its specific impact on prostate cancer (PCa) remains poorly understood. This study aimed to investigate the role of lactylation related genes (LRGs) in PCa. LRGs were identified and analysed using data from The Cancer Genome Atlas (TCGA), DKFZ2018, GSE46602 and GSE70768 cohorts. Unsupervised clustering was employed to categorise patients with PCa into two distinct clusters. Prognostic models for PCa were developed using multiple machine learning techniques. LRGs signature was established and validated through training and validation sets. The role of leukocyte immunoglobulin-like receptor B4 (LILRB4) in PCa was examined both in vitro and in vivo. Analysis of LRG expression and prognosis in patients with PCa revealed two distinct clusters with differing survival rates and immune responses. Machine learning models demonstrated the ability to predict survival risks, potentially aiding in the development of personalised treatment strategies. Additionally, LILRB4, a key LRG, promotes PCa progression by modulating the NF-κB and PI3K/AKT pathways, highlighting its potential as a therapeutic target. LRGs exert a pivotal influence on PCa, impacting patient prognosis, immune response and drug sensitivity. The LRGs signature emerges as an essential prognostic tool and a promising therapeutic target for PCa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203412PMC
http://dx.doi.org/10.1111/jcmm.70669DOI Listing

Publication Analysis

Top Keywords

machine learning
12
pca
9
prostate cancer
8
patients pca
8
distinct clusters
8
lrgs signature
8
therapeutic target
8
lrgs
5
lactylation-related gene
4
gene lilrb4
4

Similar Publications