A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

LGFUNet: A Water Extraction Network in SAR Images Based on Multiscale Local Features with Global Information. | LitMetric

LGFUNet: A Water Extraction Network in SAR Images Based on Multiscale Local Features with Global Information.

Sensors (Basel)

Chinese Academy of Surveying and Mapping, Beijing 100036, China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To address existing issues in water extraction from SAR images based on deep learning, such as confusion between mountain shadows and water bodies and difficulty in extracting complex boundary details for continuous water bodies, the LGFUNet model is proposed. The LGFUNet model consists of three parts: the encoder-decoder, the DECASPP module, and the LGFF module. In the encoder-decoder, the Swin-Transformer module is used instead of convolution kernels for feature extraction, enhancing the learning of global information and improving the model's ability to capture the spatial features of continuous water bodies. The DECASPP module is employed to extract and select multiscale features, focusing on complex water body boundary details. Additionally, a series of LGFF modules are inserted between the encoder and decoder to reduce the semantic gap between the encoder and decoder feature maps and the spatial information loss caused by the encoder's downsampling process, improving the model's ability to learn detailed information. Sentinel-1 SAR data from the Qinghai-Tibet Plateau region are selected, and the water extraction performance of the proposed LGFUNet model is compared with that of existing methods such as U-Net, Swin-UNet, and SCUNet++. The results show that the LGFUNet model achieves the best performance, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196878PMC
http://dx.doi.org/10.3390/s25123814DOI Listing

Publication Analysis

Top Keywords

lgfunet model
16
water extraction
12
water bodies
12
sar images
8
images based
8
boundary details
8
continuous water
8
proposed lgfunet
8
decaspp module
8
improving model's
8

Similar Publications