A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

SGF-SLAM: Semantic Gaussian Filtering SLAM for Urban Road Environments. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the growing deployment of autonomous driving and unmanned systems in road environments, efficiently and accurately performing environmental perception and map construction has become a significant challenge for SLAM systems. In this paper, we propose an innovative SLAM framework comprising a frontend tracking network called SGF-net and a backend filtering mechanism, namely Semantic Gaussian Filter. This framework effectively suppresses dynamic objects by integrating feature point detection and semantic segmentation networks, filtering out Gaussian point clouds that degrade mapping quality, thus enhancing system performance in complex outdoor scenarios. The inference speed of SGF-net has been improved by over 23% compared to non-fused networks. Specifically, we introduce SGF-SLAM (Semantic Gaussian Filter SLAM), a dynamic mapping framework that shields dynamic objects undergoing temporal changes through multi-view geometry and semantic segmentation, ensuring both accuracy and stability in mapping results. Compared with existing methods, our approach can efficiently eliminate pedestrians and vehicles on the street, restoring an unobstructed road environment. Furthermore, we present a map update function, which is aimed at updating areas occluded by dynamic objects by using semantic information. Experiments demonstrate that the proposed method significantly enhances the reliability and adaptability of SLAM systems in road environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196752PMC
http://dx.doi.org/10.3390/s25123602DOI Listing

Publication Analysis

Top Keywords

semantic gaussian
12
road environments
12
dynamic objects
12
sgf-slam semantic
8
systems road
8
slam systems
8
gaussian filter
8
semantic segmentation
8
slam
5
semantic
5

Similar Publications