Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
With the growing deployment of autonomous driving and unmanned systems in road environments, efficiently and accurately performing environmental perception and map construction has become a significant challenge for SLAM systems. In this paper, we propose an innovative SLAM framework comprising a frontend tracking network called SGF-net and a backend filtering mechanism, namely Semantic Gaussian Filter. This framework effectively suppresses dynamic objects by integrating feature point detection and semantic segmentation networks, filtering out Gaussian point clouds that degrade mapping quality, thus enhancing system performance in complex outdoor scenarios. The inference speed of SGF-net has been improved by over 23% compared to non-fused networks. Specifically, we introduce SGF-SLAM (Semantic Gaussian Filter SLAM), a dynamic mapping framework that shields dynamic objects undergoing temporal changes through multi-view geometry and semantic segmentation, ensuring both accuracy and stability in mapping results. Compared with existing methods, our approach can efficiently eliminate pedestrians and vehicles on the street, restoring an unobstructed road environment. Furthermore, we present a map update function, which is aimed at updating areas occluded by dynamic objects by using semantic information. Experiments demonstrate that the proposed method significantly enhances the reliability and adaptability of SLAM systems in road environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196752 | PMC |
http://dx.doi.org/10.3390/s25123602 | DOI Listing |