98%
921
2 minutes
20
Background: Dengue is a global health concern, with half of the world's population at risk and no antiviral treatment available. This Phase 0 study investigated dengue infections among household contacts (HHCs) of dengue index cases (ICs) and assessed the feasibility of conducting a Phase 2 trial for a novel antiviral.
Methods: Participants were enrolled in Nha Trang, Vietnam, from April 2022 to February 2023. Dengue ICs were identified within 72 h of fever onset, and their healthy adult HHCs enrolled within 48 h. Blood samples and questionnaires were collected bi-weekly for four weeks, with a follow-up visit on day 40. DENV RT-qPCR, NS1, and anti-DENV IgM/IgG ELISAs were performed.
Results: Overall, 130 dengue ICs and 301 HHCs were enrolled, with 91.7% (276/301) completing all follow-up visits. Baseline anti-DENV IgG showed prior dengue infections in 262/301 HHCs (87.0%). Fifty HHCs were excluded from the HHC infection analysis based on evidence of a DENV infection (viral load [VL], NS1, IgM, and IgG results) at enrollment. During follow-up, 2.0% of HHCs (5/251) had DENV infections based on virological parameters (DENV RNA and/or NS1 positivity), and anti-DENV IgG/IgM seroconversion was detected in 7.2% (18/251).
Conclusions: This study demonstrated the operational feasibility of a dengue IC-HHC design for a Phase 2 trial.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197545 | PMC |
http://dx.doi.org/10.3390/v17060859 | DOI Listing |
Arboviral infections, particularly Dengue and Zika, continue to rise at an alarming rate, with both viruses declared global health emergencies in 2024 and 2016, respectively. The NS5 RNA-dependent RNA polymerase (RdRp) of dengue virus (DENV) and Zika virus (ZIKV) is highly conserved, making nucleoside-based RdRp inhibitors a promising strategy for antiviral development. While nucleoside analogs have shown strong clinical potential, challenges such as cell permeability, the efficiency of triphosphate conversion, degradation, and mitochondrial toxicity remain.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Biology, Stanford University, Stanford, CA 94305.
Climate change is expected to pose significant threats to public health, particularly vector-borne diseases. Despite dramatic recent increases in dengue that many anecdotally connect with climate change, the effect of anthropogenic climate change on dengue remains poorly quantified. To assess this link, we assembled local-level data on dengue across 21 countries in Asia and the Americas.
View Article and Find Full Text PDFParasite
September 2025
Parasitology Department, São Paulo University, 1374 Av. Prof. Lineu Prestes, São Paulo, State of São Paulo 05508-000, Brazil.
Understanding why Diptera, such as mosquitoes and sand flies, feed on humans is crucial in defining them as vectors of diseases such as malaria, dengue fever, Zika virus, and leishmaniasis. Determining their attraction to humans (anthropophily) helps in assessing the risk of disease transmission, designing effective vector control strategies, and monitoring the effectiveness of existing control measures. An important question is whether they are specifically attracted to humans in preference to other mammals or whether there is something else at play.
View Article and Find Full Text PDFPLoS One
September 2025
Instituto de Física, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.
Dengue fever remains a major public health concern, requiring continuous efforts to mitigate its impact. This study investigates the influence of key temperature-dependent parameters on dengue transmission dynamics in Foz do Iguaçu, a tri-border municipality in southern Brazil, using a mathematical model based on a system of ordinary differential equations. The fitted model aligns well with observed data.
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2025
División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia.
Background: Dengue and chikungunya are arboviral diseases with overlapping clinical characteristics. Dengue virus (DENV) is endemic in Colombia, and in 2014/2015, the chikungunya virus (CHIKV) caused an epidemic that resulted in over 350,000 cases. Since then, both viruses have been actively co-circulating.
View Article and Find Full Text PDF