Towards Reliable Adhesive Bonding: A Comprehensive Review of Mechanisms, Defects, and Design Considerations.

Materials (Basel)

Brunel Composites Centre, College of Engineering, Design and Physical Sciences, Brunel University London, London UB8 3PH, UK.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Adhesive bonding has emerged as a transformative joining method across multiple industries, offering lightweight, durable, and versatile alternatives to traditional fastening techniques. This review provides a comprehensive exploration of adhesive bonding, from fundamental adhesion mechanisms, mechanical and molecular, to application-specific criteria and the characteristics of common adhesive types. Emphasis is placed on challenges affecting bond quality and longevity, including defects such as kissing bonds, porosity, voids, poor cure, and substrate failures. Critical aspects of surface preparation, bond line thickness, and adhesive ageing under environmental stressors are analysed. Furthermore, this paper highlights the pressing need for sustainable solutions, including the disassembly and recyclability of bonded joints, particularly within the automotive and aerospace sectors. A key insight from this review is the lack of a unified framework to assess defect interaction, stochastic variability, and failure prediction, which is mainly due complexity of multi-defect interactions, the compositional expense of digital simulations, or the difficulty in obtaining sufficient statistical data needed for the stochastic models. This study underscores the necessity for multi-method detection approaches, advanced modelling techniques (i.e., debond-on-demand and bio-based formulations), and future research into defect correlation and sustainable adhesive technologies to improve reliability and support a circular materials economy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195023PMC
http://dx.doi.org/10.3390/ma18122724DOI Listing

Publication Analysis

Top Keywords

adhesive bonding
12
adhesive
5
reliable adhesive
4
bonding comprehensive
4
comprehensive review
4
review mechanisms
4
mechanisms defects
4
defects design
4
design considerations
4
considerations adhesive
4

Similar Publications

A cross-scale analysis for the determinants of bonding dynamics on the distributions of rolling velocities of cells in microvessels.

Biophys J

September 2025

Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

The interplay between subcellular adhesion dynamics and cellular-scale deformations under shear flow drives key physiological and pathological processes. While both bond kinetics and fluid-cell interactions have been extensively studied in rolling adhesion, how bond characteristics quantitatively determine cellular velocity distributions remains unclear. In this study, we systematically investigate how force-free bond kinetics and intrinsic mechanical properties govern rolling adhesion dynamics, using macroscopic velocity distributions as a reference.

View Article and Find Full Text PDF

Enhancing bonding and durability of polyaryletherketone (PAEK) restorations with nonthermal plasma activation and monomer-based priming.

J Prosthet Dent

September 2025

Associate Professor, School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, ROC. Electronic address:

Statement Of Problem: While valued for their durability in dental prosthetics, polyaryletherketone (PAEK) materials, known for their chemical inertness and low surface energy, pose significant challenges in achieving durable adhesion to resin cements, a critical factor for the long-term success of dental restorations.

Purpose: This study evaluates the novel application of a methyl methacrylate-urethane dimethacrylate (MMA-UDMA) bonding primer following handheld nonthermal plasma (HNP) treatment to enhance the bonding performance and aging durability of PAEK materials with varying microfiller compositions, addressing the persistent challenge of achieving long-term adhesion in dental restorations.

Material And Methods: Three PAEK types, ceramic-filled polyetheretherketone (PEEK), titanium dioxide-filled polyetherketoneketone (PEKK), and PEEK with disk shape (Ø10×2.

View Article and Find Full Text PDF

Purpose: To evaluate the effect of die spacer thickness on the fit and load to failure of cantilever resin-bonded fixed dental prostheses (RBFDPs).

Methods: Two identical maxillary RBFDPs with a retainer on the canine were designed to replace a lateral incisor. One design involved a closely fitting retainer with no die spacer (NDS), and the other included an 80-µm die spacer (DS).

View Article and Find Full Text PDF

Introduction: This study investigated the effect of sandblasting time and primer type on the shear bond strength of composite attachments to full-contour zirconia crowns.

Methods: A total of 108 zirconia specimens were fabricated and divided into 9 groups (n = 12) according to sandblasting time (10, 30, and 60 seconds) and primer type (silane, 10-methacryloyloxydecyl dihydrogen phosphate [MDP], universal). After sandblasting with 110-μm alumina particles, specimens were primed, and attachments were bonded using a packable composite.

View Article and Find Full Text PDF

ConspectusHydroaminoalkylation, the catalytic addition of amines to alkenes, has evolved as a powerful tool in modern synthetic chemistry, offering an atom-economic and green approach to the construction of C-C bonds. This reaction enables the direct amine functionalization of alkenes and alkynes without the need for protecting groups, directing groups, or prefunctionalization, thereby eliminating stoichiometric waste and minimizing synthetic steps. Over the past two decades, significant advances in catalyst development and mechanistic understanding have expanded the scope of hydroaminoalkylation, allowing for control over regio-, diastereo-, and enantioselectivity.

View Article and Find Full Text PDF