Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Osteoarthritis (OA) is a progressive and degenerative disease of the joints, characterized by inflammation and loss of cartilage. Recently, mRNA therapies have emerged as promising disease-modifying treatments for cartilage repair and regeneration. Poly(amidoamine)-based polymeric nanoparticles (PAA-based NPs) were previously developed for intracellular mRNA delivery in chondrocytes, showing high biocompatibility and transfection efficiency. In this work, we aimed to evaluate this delivery system in models simulating the complex joint environment and in vivo in rat knee joints. For this purpose, cationic uncoated NPs and neutral PEG-coated NPs were formulated to test mRNA delivery in different models: (1) a 2D culture of chondrocytes supplemented with synthetic synovial fluid, (2) a cartilage-on-chip platform, (3) an ex vivo culture of mouse knee joints, and (4) an in vivo OA rat model. In the presence of synovial fluid, the PEG-coated NPs showed favorable physicochemical properties, higher cell uptake and equivalent GFP expression as uncoated NPs in the 2D cell culture. Similar observations were made using the cartilage-on-chip platform. In contrast, both NPs appeared to display cartilage penetration and uptake by tissue-resident chondrocytes in ex vivo joint culture. Upon intra-articular administration in vivo, the PAA-based NPs did not affect cartilage integrity in healthy nor OA rat knee joints, although enhanced synovial inflammation was observed. Uncoated NPs showed prolonged retention compared to PEG-coated NPs and higher luciferase expression in OA knee joints than in healthy joints of rats, whereas no difference was found for coated NPs. These results suggest that electrostatic interactions between cationic NPs and the anionic components of the extracellular matrix play a significant role in mRNA delivery to the articular cartilage, and that disease status may affect delivery of nucleic acids dependent on NP properties. In conclusion, PAA-based NPs are a promising platform for intra-articular mRNA delivery in the joints. STATEMENT OF SIGNIFICANCE: In this study, we investigate the application of poly(amidoamine)-based polymeric nanoparticles (PAA-based NPs) for mRNA delivery in the joints, aiming for use in osteoarthritis (OA) treatment. The formulations were tested in in vitro models mimicking the joint environment, and also following intra-articular injection ex vivo and in vivo (OA-induced rats). We demonstrate for positively charged uncoated NPs higher in vivo gene expression in OA knee joints than neutral PEG-coated NPs. However, PEG-coated NPs induced more consistent gene expression in both healthy and OA knee joints. These findings highlight the potential of PAA-based NPs for osteoarthritis research and how the interplay between the NP properties, joint biology and disease state can affect mRNA delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2025.06.039DOI Listing

Publication Analysis

Top Keywords

mrna delivery
24
knee joints
24
paa-based nps
20
peg-coated nps
20
nps
17
uncoated nps
16
polymeric nanoparticles
12
joints
10
delivery
9
mrna
8

Similar Publications

Metal oxide nanoparticles are employed in various applications such as medicine, environmental remediation, molecular sensing, and drug delivery. However, large-scale commercial production and the use of smaller-sized nanoparticles increase the potential risk of toxicity to humans. Therefore, there is an urgent need to investigate the toxicity of nanomaterials.

View Article and Find Full Text PDF

The emergence of messenger ribonucleic acid (mRNA) vaccines as an alternative platform to traditional vaccines has been accompanied by advances in nanobiotechnology, which have improved the stability and delivery of these vaccines through novel nanoparticles (NPs). Specifically, the development of NPs for mRNA delivery has facilitated the loading, protection and release of mRNA in the biological microenvironment, leading to the stimulation of mRNA translation for effective intervention strategies. Intriguingly, two mRNA vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), have been permitted for emergency usage authorization to prevent COVID-19 infection by USFDA.

View Article and Find Full Text PDF

A new frontier in oncology: Understanding the landscape of cancer vaccines.

J Oncol Pharm Pract

September 2025

Department of Research & Development, Squad Medicine and Research (SMR), Amadalavalasa, Andhra Pradesh, India.

Cancer vaccines represent a transformative shift in oncology, aiming to prevent malignancies or treat established cancers by training the immune system to recognize tumor-specific or tumor-associated antigens. This review explores the diverse platforms and mechanisms supporting cancer vaccines, ranging from prophylactic vaccines such as HPV and hepatitis B vaccines that have significantly reduced virus-related cancers to therapeutic vaccines like Sipuleucel-T and T-VEC that extend survival in prostate cancer and melanoma. Vaccine types are classified, and delivery platforms including mRNA, peptide, dendritic cell and viral vector-based approaches are examined alongside pivotal clinical trial outcomes.

View Article and Find Full Text PDF

Messenger ribonucleic acid (mRNA), a promising tool in vaccine and therapeutic development, is reliant on intact mRNA delivery into target cells. Given its susceptibility to degradation, ensuring its stability is crucial, necessitating rigorous quality control throughout the product life cycle. This study presents an ion-pair reverse-phase liquid chromatography method that enables rapid and direct mRNA extraction from lipid nanoparticles, facilitated by using a surfactant in the sample preparation.

View Article and Find Full Text PDF

Nebulized Lipid Nanoparticles Deliver mRNA to the Liver for Treatment of Metabolic Diseases.

Nano Lett

September 2025

State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

An optimal administration approach is critical for effective mRNA delivery and treatment. Nebulizer inhalation offers a mild, convenient, and noninvasive strategy with high translational potential but primarily focused on lung delivery. In this study, we found that surface charges influence tissue targeting of mRNA lipid nanoparticle (mRNA-LNP) postnebulization.

View Article and Find Full Text PDF