Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) poses a pressing threat to global healthcare settings, as most antibiotics are ineffective against this nosocomial pathogen. Vaccines, particularly peptide-based vaccines, offer a promising and effective strategy to deal with these infections.

Objective: This study aimed to evaluate the potential of epitopes derived from the OmpA protein of A. baumannii as vaccine candidates for combating this pathogen.

Methods: This study employed advanced bioinformatic tools to identify potential epitopes for vaccine candidates against A. baumannii infections. IEDB and SYFPEITHI were used to identify T-cell epitopes of A. baumannii OmpA protein. The epitopes were filtered based on score, clustering, human similarity, immunogenicity, cytokine response, and safety. Epitopes with high scores and both class-I and class-II sites were selected. Three epitopes were chosen for molecular docking and physicochemical evaluation as potential vaccine candidates.

Results: Three epitopes (EP1, EP2, and EP3) derived from A. baumannii OmpA were found to effectively bind with specific human leukocyte antigen (HLA) alleles. These epitopes have shown promising potential to elicit both cellular and humoral immune responses. Their physicochemical and immunological properties were thoroughly evaluated, indicating strong antigenic potential, non-toxicity, lack of allergenic properties, good binding affinity, and wide population coverage. The epitopes' two- and three-dimensional structures were predicted, and they were docked with their respective HLA alleles to assess their ability to stimulate innate immune responses. The predicted epitopes and HLA-allelic complexes exhibited excellent binding affinity, optimal Root Mean Square Deviation (RMSD) values, favorable physicochemical properties, and high-quality structural characteristics.

Conclusions: This study identified epitopes that hold promise as potential solutions for combating multidrug-resistant A. baumannii, pending validation through wet lab experiments and clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13258-025-01656-5DOI Listing

Publication Analysis

Top Keywords

vaccine candidates
12
epitopes
11
potential vaccine
8
baumannii
8
acinetobacter baumannii
8
potential epitopes
8
ompa protein
8
baumannii ompa
8
three epitopes
8
hla alleles
8

Similar Publications

H5N1 influenza virus-like particles based on BEVS induce robust functional antibodies and immune responses.

Virology

August 2025

Changchun Institute of Biological Products Co.,Ltd, Changchun, China; State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, China. Electronic address:

Avian influenza virus infections pose a potential pandemic threat. The currently licensed vaccines have inherent limitations, emphasizing the urgent need for improved influenza vaccines. Here, we developed a novel hemagglutinin (HA) virus-like particle (VLP) vaccine candidate through the baculovirus expression vector system (BEVS).

View Article and Find Full Text PDF

Background: Dengue virus (DENV) is a major global health challenge, causing over 7.6 million reported cases in 2024. Neutralizing monoclonal antibodies (NmAbs) have emerged as promising therapeutics to address the limitations of vaccines and lack of antivirals, but their development is complicated by viral diversity, "breathing" dynamics, and antibody-dependent enhancement (ADE).

View Article and Find Full Text PDF

Moraxella catarrhalis is a Gram-negative diplococcus bacterium and a common respiratory pathogen, implicated in 15-20% of otitis media (OM) cases in children and chronic obstructive pulmonary disease (COPD) in adults. The rise of drug-resistant Moraxella catarrhalis has highlighted the urgent need for the potent vaccine strategies to reduce its clinical burden. Despite a mortality rate of 13%, there is no FDA-approved vaccine for this pathogen.

View Article and Find Full Text PDF

Efficient eukaryotic expression and potent antiviral activity of a long-acting recombinant feline interferon-ω2-Fc fusion protein against major feline viruses.

Antiviral Res

September 2025

College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of E

Feline interferon-ω2 (FeIFN-ω2) holds potential as a therapeutic agent against feline viral infections. However, its clinical application is limited by rapid clearance and suboptimal antiviral effectiveness. Thus, in this study, an Fc-fused construct, FeIFN-ω2-Fc, was engineered to improve antiviral potency and pharmacokinetic properties both in vitro and in vivo.

View Article and Find Full Text PDF

The fourth leading cause of death in the US, Chronic Obstructive Pulmonary Disease (COPD) is punctuated by frequent viral and bacterial infections causing severe acute exacerbations (AECOPD) and increased mortality. In previous work we have shown that altered immune cell signaling may confer increased and persistent susceptibility to infection. Here we continue this investigation by conducting broad-spectrum proteomic profiling of circulating white blood cells to assemble an empirical protein-protein interaction network associated with frequency of infectious exacerbation.

View Article and Find Full Text PDF