Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Single-step genomic BLUP (ssGBLUP) has gained increasing interest from forest tree breeders. ssGBLUP combines phenotypic and pedigree data with marker data to enhance the prediction accuracy of estimated breeding values. However, potential errors in determining progeny relationships among open-pollinated species may result in lower accuracy of estimated breeding values. Unknown parent groups (UPG) and metafounders (MF) were developed to address missing pedigrees in a population. This study aimed to incorporate MF into ssGBLUP models to select the best parents for controlled mating and the best progenies for cloning in a tree breeding population of .

Methods: Genetic groups were defined to include base individuals of similar genetic origin. Tree growth was measured as total height (TH) and diameter at breast height (DBH), while disease resistance was assessed through heteroblasty (the transition from juvenile to adult foliage: ADFO). All traits were evaluated at 14 and 21 months. Two genomic multi-trait threshold linear models were fitted, with and without MF. Also, two multi-trait threshold-linear models based on phenotypic and pedigree information (ABLUP) were used to evaluate the increase in accuracy when adding genomic information to the model. To test the quality of models by cross-validation, the linear regression method (LR) was used.

Results: The LR statistics indicated that the ssGBLUP models without MF performed better, as the inclusion of MF increased the bias of predictions. The ssGBLUP accuracy for both validations ranged from 0.42 to 0.68.

Conclusions: The best model to select parents for controlled matings and individuals for cloning is ssGBLUP without MF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193199PMC
http://dx.doi.org/10.3390/genes16060700DOI Listing

Publication Analysis

Top Keywords

single-step genomic
8
disease resistance
8
phenotypic pedigree
8
accuracy estimated
8
estimated breeding
8
breeding values
8
ssgblup models
8
parents controlled
8
ssgblup
6
models
5

Similar Publications

Liver abscesses are a concern in feedlot cattle, and little is known about the role of genetics in their development. This study aimed to estimate genetic parameters and to identify single nucleotide polymorphisms (SNP) associated with liver abscesses. Crossbred cattle representing 18 breeds in the United States Meat Animal Research Center Germplasm Evaluation Program were phenotyped for liver abscesses at slaughter (n = 9,044).

View Article and Find Full Text PDF

Random regression models (RRM) combined with single-step genomic best linear unbiased prediction (ssGBLUP) are widely used for genomic evaluations in dairy cattle. This study aimed to efficiently implement RRM with ssGBLUP for national dairy cattle evaluations. Data from the Czech Holstein population were used, including 30 million test-day records for milk yield across 3 lactations.

View Article and Find Full Text PDF

One of the most powerful tools for identifying genomic regions associated with various phenotypes is GWAS. Identifying genes influencing milk production traits in Iranian Holstein dairy cows is crucial to understanding the genetic mechanisms underlying these traits and improving future milk production. Therefore, using a single-step GWAS, this study aimed to identify genomic regions, genes, and pathways associated with milk yield (MY), milk fat percentage (FP), milk protein percentage (PP), and somatic cell count (SCC) traits in the Iranian Holstein cattle population.

View Article and Find Full Text PDF

Although genomic selection can accelerate livestock breeding, its application in many countries is hindered due to the limited size of reference populations. To address this issue, researchers have explored methods of combining multiple breeds to create reference populations, aiming to enhance the accuracy of genomic prediction. The main objective of this study was to evaluate the impact of the construction of mixed reference populations at different genetic distance levels on the accuracy of multi-breed genome prediction in multi-breed beef cattle populations using three evaluation methods: GBLUP, ssGBLUP, and wGBLUP.

View Article and Find Full Text PDF

Reproductive inefficiencies, such as delayed age at first calving (AFC) and a prolonged calving interval (CI), hinder the productivity of Thai swamp buffaloes. This study aimed to improve the genetic evaluation of these traits by integrating genomic selection (GS) and genome-wide association studies (GWASs). Reproductive records (n = 1034) and genotypes (n = 474) from swamp buffaloes across Thailand were analyzed.

View Article and Find Full Text PDF